• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data management of flight test telemetry frames /

Samaan, Mouna M. January 1998 (has links)
Thesis (PhD)--University of South Australia, 1998
2

Temporally Correct Algorithms for Transaction Concurrency Control in Distributed Databases

Tuck, Terry W. 05 1900 (has links)
Many activities are comprised of temporally dependent events that must be executed in a specific chronological order. Supportive software applications must preserve these temporal dependencies. Whenever the processing of this type of an application includes transactions submitted to a database that is shared with other such applications, the transaction concurrency control mechanisms within the database must also preserve the temporal dependencies. A basis for preserving temporal dependencies is established by using (within the applications and databases) real-time timestamps to identify and order events and transactions. The use of optimistic approaches to transaction concurrency control can be undesirable in such situations, as they allow incorrect results for database read operations. Although the incorrectness is detected prior to transaction committal and the corresponding transaction(s) restarted, the impact on the application or entity that submitted the transaction can be too costly. Three transaction concurrency control algorithms are proposed in this dissertation. These algorithms are based on timestamp ordering, and are designed to preserve temporal dependencies existing among data-dependent transactions. The algorithms produce execution schedules that are equivalent to temporally ordered serial schedules, where the temporal order is established by the transactions' start times. The algorithms provide this equivalence while supporting currency to the extent out-of-order commits and reads. With respect to the stated concern with optimistic approaches, two of the proposed algorithms are risk-free and return to read operations only committed data-item values. Risk with the third algorithm is greatly reduced by its conservative bias. All three algorithms avoid deadlock while providing risk-free or reduced-risk operation. The performance of the algorithms is determined analytically and with experimentation. Experiments are performed using functional database management system models that implement the proposed algorithms and the well-known Conservative Multiversion Timestamp Ordering algorithm.
3

Optimization Strategies for Data Warehouse Maintenance in Distributed Environments

Liu, Bin 30 April 2002 (has links)
Data warehousing is becoming an increasingly important technology for information integration and data analysis. Given the dynamic nature of modern distributed environments, both source data updates and schema changes are likely to occur autonomously and even concurrently in different data sources. Current approaches to maintain a data warehouse in such dynamic environments sequentially schedule maintenance processes to occur in isolation. Furthermore, each maintenance process is handling the maintenance of one single source update. This limits the performance of current data warehouse maintenance systems in a distributed environment where the maintenance of source updates endures the overhead of network delay as well as IO costs for each maintenance query. In this thesis work, we propose two different optimization strategies which can greatly improve data warehouse maintenance performance for a set of source updates in such dynamic environments. Both strategies are able to support source data updates and schema changes. The first strategy, the parallel data warehouse maintainer, schedules multiple maintenance processes concurrently. Based on the DWMS_Transaction model, we formalize the constraints that exist in maintaining data and schema changes concurrently and propose several parallel maintenance process schedulers. The second strategy, the batch data warehouse maintainer, groups multiple source updates and then maintains them within one maintenance process. We propose a technique for compacting the initial sequence of updates, and then for generating delta changes for each source. We also propose an algorithm to adapt/maintain the data warehouse extent using these delta changes. A further optimization of the algorithm also is applied using shared queries in the maintenance process. We have designed and implemented both optimization strategies and incorporated them into the existing DyDa/TxnWrap system. We have conducted extensive experiments on both the parallel as well as the batch processing of a set of source updates to study the performance achievable under various system settings. Our findings include that our parallel maintenance gains around 40 ~ 50% performance improvement compared to sequential processing in environments that use single-CPU machines and little network delay, i.e, without requiring any additional hardware resources. While for batch processing, an improvement of 400 ~ 500% improvement compared with sequential maintenance is achieved, however at the cost of less frequent refreshes of the data warehouse content.
4

An optimistic concurrency control mechanism based on clock synchronization

Park, Myoung Jin 01 January 1996 (has links)
No description available.

Page generated in 0.1155 seconds