• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and Computational Studies in Bioorganic and Synthetic Organic Chemistry

Lam, Polo Chun Hung 13 December 2004 (has links)
Cationâ Ï interaction is an important determinant in protein structure and function. Among the three proteinogenic aromatic amino acids, tryptophan (Trp) is the strongest cationâ Ï donor. We reported the asymmetric syntheses of tryptophan regioisomers in which the amino acid side chain is attached at different position of the indole moiety. These new tryptophan regioisomers can effect a different mode of cationâ Ï interaction. In nature, dramatic increases in binding affinity can be achieved through multivalent binding. Following a fragmentation-dimerization approach, we synthesized Taxol-based dimer in which the baccatin III core of Taxol is coupled with flexible PEG linker. However, microtubule assembly assay suggested that these new dimers are not capable of effecting bivalent binding to the Taxol binding sites in microtubules. Memory of chirality (MOC) is an emerging theme in asymmetric synthesis in which the dynamic chirality of the reactive intermediate "memorizes" the static chirality of the reactant. Using dynamic 1D and 2D NMR and density functional theory (DFT) methods, we studied the MOC effect of 1,4-benzodiazepin-2-ones. Reconstruction of the reaction pathway using DFT calculations supported our proposed contra steric, retention of configuration mechanism. / Ph. D.
2

NANOSTRUCTURED PRESENTATION OF CARBOHYDRATES AND PROTEINS AT HYDROGEL SURFACES

Anamika Singh (16631778) 24 July 2023 (has links)
<p>Extracellular matrix (ECM) creates high-resolution chemical patterns, by assembling simple molecules with nm-scale features (e.g., carbohydrates, nucleotides, amino acids) into complex structures up to micrometers and extending to even larger scales across tissues (e.g., glycans, DNA, proteins), capable of carrying out the diverse and complex cellular functions. Mimicking the complexity of such biological systems requires precise control over the chemical patterning on substrates that exhibit physiochemical properties similar to biological systems (such as hydrogels). Although hydrogels provide tunable physiochemical properties suitable for biological applications; it is a porous material where pore sizes can range from 30 nm to greater than 1000 nm. Due to this structural heterogeneity, chemical patterning below the length scale of this heterogeneity is very challenging.</p> <p>Here, we demonstrate a new assembly system for generating a nanostructured presentation of carbohydrates on the hydrogel surface. This approach is based on the striped phases assembly of functional alkanes where 1-nm resolution functional patterns are readily assembled on substrates such as highly ordered pyrolytic graphite (HOPG). In this assembly, molecules are stabilized by noncovalent interactions, including alkyl-pi interactions underlying the HOPG, van der Waals interaction between the adjacent alkyl chains, and hydrogen bonding between polar head groups. Topochemical polymerization converts internal diynes into conjugated polydiacetylenes (PDAs). PDAs can also be utilized to covalently attach the striped pattern to polyacrylamide hydrogels through free radical chemistry.</p> <p>Here, we synthesize new amphiphiles with carbohydrate headgroups (N-acetyl-D-glucosamine (GlcNAc), and D-glucuronic acid (GlcA)), assembled into striped phases on HOPG and covalently transfer to polyacrylamide hydrogels. GlcNAc binds to wheat germ agglutinin (WGA), a lectin that binds specifically in a multivalent fashion (dissociation constant KD in nm range) to GlcNAc. We show that GlcNAc striped phases generate highly selective interactions with wheat germ agglutinin (WGA) but do not induce specific binding with concanavalin A (another lectin molecule that does not target GlcNAc). We further demonstrate that WGA binding affinity can be modulated by shifting the position of diacetylenes that bring the polymer backbone closer to the GlcNAc, increasing the effecting local concentration of carbohydrates.</p> <p>We investigated the possibility of using sPDA for secondary functionalization with complex biological molecules (such as biotin and cRGD) to mimic the ECM composition closely. The unusual reactivity of the sPDA backbones during the covalent transfer of the striped phase monolayer to hydrogels illustrates the potential of sPDA reactivity azides. In this work, we show that the addition of substituted azide molecules to sPDA-functionalized hydrogels produces a decrease in the fluorescence of the sPDA monolayer. Since these reactions are occurring on porous hydrogel surfaces characterization using techniques such as IR or NMR is difficult. We carried out further solution-phase reactions using a soluble PDA where PDA UV-vis absorption spectra red-shift after the reaction between the PDA backbone and azide. These experiments support the hypothesis of sPDA and azide click reaction.</p>

Page generated in 0.0716 seconds