Spelling suggestions: "subject:"multivariate 3analyse"" "subject:"multivariate analanalyse""
11 |
On dependence and extremesKuhn, Gabriel. Unknown Date (has links)
Techn. University, Diss., 2006--München.
|
12 |
Elementspurenanalytik und multivariate Statistik zur Untersuchung und Bewertung des Belastungszustandes von FließgewässernAulinger, Armin Michael. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Jena.
|
13 |
Multivariate Time Series for the Analysis of Land Surface Dynamics - Evaluating Trends and Drivers of Land Surface Variables for the Indo-Gangetic River Basins / Multivariate Zeitreihen zur Analyse von Landoberflächendynamiken - Auswertung von Trends und Treibern von Landoberflächenvariablen für Flusseinzugsgebiete der Indus-Ganges EbeneÜreyen, Soner January 2022 (has links) (PDF)
The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument.
In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed.
To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere.
In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area.
These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions. / Die Untersuchung von Erdsystemkomponenten und deren Wechselwirkungen ist von großer Relevanz, um das Prozessverständnis sowie die Auswirkungen des globalen Klimawandels auf die Landoberfläche zu verbessern. In diesem Zusammenhang liefert die Erdbeobachtung (EO) wertvolle Langzeitaufnahmen zu einer Vielzahl an Landoberflächenvariablen. Diese können als Indikator für die Erdsystemkomponenten genutzt werden und sind essenziell für großflächige Analysen. Flusseinzugsgebiete sind besonders geeignet um Landoberflächendynamiken mit multivariaten Zeitreihen zu analysieren, da diese verschiedene Sphären des Erdsystems umfassen. Zur Charakterisierung der Landoberfläche stehen zahlreiche EO-Missionen mit unterschiedlichen Eigenschaften zur Verfügung. Nur einige wenige Missionen gewährleisten jedoch die Erstellung von räumlich und zeitlich konsistenten Zeitreihen mit äquidistanten Beobachtungen über großräumige Untersuchungsgebiete, wie z.B. die MODIS Sensoren.
Um bisherige EO-Analysen zu Landoberflächendynamiken in großen Flusseinzugsgebieten zu untersuchen, wurde eine Literaturrecherche durchgeführt, wobei mehrere Forschungslücken identifiziert wurden. Studien untersuchten nur selten ein ganzes Einzugsgebiet, sondern konzentrierten sich lediglich auf Teilgebietsgebiete oder regionale Untersuchungsgebiete. Darüber hinaus wurden transnationale Einzugsgebiete nur unzureichend analysiert, wobei sich die Studien größtenteils auf ausgewählte Anrainerstaaten beschränkten. Auch wurde die Analyse von Umweltveränderungen meistens anhand einer einzigen EO-Landoberflächenvariable durchgeführt, während eine synergetische Untersuchung von sphärenübergreifenden Landoberflächenvariablen kaum unternommen wurde.
Um diese Forschungslücken zu adressieren, ist ein methodischer Ansatz notwendig, der (1) die Vorverarbeitung und Harmonisierung von Zeitreihen aus mehreren Quellen und (2) die statistische Analyse eines multivariaten Merkmalsraums ermöglicht. Für die Entwicklung und Anwendung eines methodischen Frameworks, das raum-zeitlich übertragbar ist, wurden die transnationalen Einzugsgebiete Indus, Ganges, Brahmaputra und Meghna (IGBM) in Südasien, deren Größe etwa der achtfachen Fläche von Deutschland entspricht, ausgewählt. Diese Einzugsgebiete hängen weitgehend von den Wasserressourcen des Monsunregens und des Hochgebirges Asiens ab. Insgesamt leben über 1,1 Milliarden Menschen in dieser Region und sind zum Teil in hohem Maße von diesen Wasserressourcen abhängig, die auch für die größten zusammenhängenden bewässerten Anbauflächen der Welt und auch für weitere inländische Bedarfe unerlässlich sind. Aufgrund ihrer sehr heterogenen geographischen Gegebenheiten ermöglichen diese Einzugsgebiete eine detaillierte sphärenübergreifende Analyse der Wechselwirkungen, einschließlich der Anthroposphäre, Biosphäre, Kryosphäre, Hydrosphäre, Lithosphäre und Atmosphäre.
In dieser Dissertation wurden Landoberflächendynamiken der letzten zwei Jahrzehnte anhand von EO-Zeitreihen zum Vegetationszustand, zu Oberflächengewässern und zur Schneebedeckung analysiert. Diese basieren auf MODIS-Aufnahmen, dem DLR Global WaterPack und dem JRC Global Surface Water Layer sowie dem DLR Global SnowPack. Diese Zeitreihen wurden in Kombination mit weiteren klimatischen, hydrologischen und anthropogenen Variablen ausgewertet. Die Harmonisierung des multivariaten Merkmalsraumes ermöglichte die Analyse von Landoberflächendynamiken unter Nutzung von statistischen Methoden. Diese Methoden umfassen (1) die Berechnung von Trends mittels des Mann-Kendall und des Theil-Sen Tests, (2) die Berechnung von phänologischen Metriken anhand des Timesat-Tools, (3) die Bewertung von treibenden Variablen unter Nutzung des PCMCI Algorithmus und (4) zusätzliche Korrelationstests zur Analyse des menschlichen Einflusses auf den Vegetationszustand und die Wasseroberfläche.
Diese Analysen wurden auf jährlichen und saisonalen Zeitskalen und für verschiedene räumliche Einheiten durchgeführt. Für den Vegetationszustand wurden weitgehend signifikant positive Trends ermittelt. Analysen haben gezeigt, dass landwirtschaftliche Nutzflächen am meisten zu diesen Trends beitragen haben. Besonders hoch waren die Trends in ariden Regionen. Bei Oberflächengewässern wurden auf jährlicher Ebene signifikant positive Trends festgestellt. Auf Pixelebene wurden jedoch sowohl regional als auch saisonal Cluster mit signifikant negativen Trends identifiziert. Die Trends für die Schneebedeckung blieben auf jährlicher Ebene weitgehend stabil, jedoch wurden in Teilen der Einzugsgebiete zu bestimmten Jahreszeiten signifikant negative Trends beobachtet. Die negativen Trends wurden auch für höhenabhängige Zonen festgestellt, insbesondere in hohen Lagen. Außerdem wurden in Teilen der Einzugsgebiete Rückgänge bei der saisonalen Dauer der Schneebedeckung ermittelt. Darüber hinaus ergab die Untersuchung des multivariaten Merkmalsraums auf kausale Zusammenhänge auf saisonaler Ebene erstmals Aufschluss über direkte und indirekte Relationen zwischen EO-Landoberflächenvariablen und den entsprechenden Einflussfaktoren. Zusammengefasst wurde die Vegetation durch die Wasserverfügbarkeit, die Oberflächengewässer durch den Abfluss und indirekt durch den Niederschlag sowie die Schneebedeckung durch Niederschlag und Temperatur mit räumlichen und saisonalen Unterschieden kontrolliert. Zusätzliche Analysen wiesen auf einen positiven Zusammenhang zwischen dem menschlichen Einfluss und den zunehmenden Trends in der Vegetationsfläche hin. Diese sphärenübergreifenden Untersuchungen zu Trends und Wechselwirkungen liefern neue und wertvolle Einblicke in den vergangenen Zustand von Landoberflächendynamiken sowie in die relevanten klimatischen und hydrologischen Einflussfaktoren. Neben den untersuchten Einzugsgebieten in Südasien sind diese Erkenntnisse auch für weitere Einzugsgebiete und geographische Regionen von großer Bedeutung.
|
14 |
Modellierung und Bewertung von IT-Kosten : empirische Analyse mit Hilfe multivariater mathematischer Methoden /Wendler, Tilo. January 2004 (has links) (PDF)
Univ., Diss.--Klagenfurt, 2003.
|
15 |
Models and algorithms for physical cryptanalysisLemke-Rust, Kerstin January 2007 (has links)
Zugl.: Bochum, Univ., Diss., 2007 / Bibliogr. S. 229 - 232
|
16 |
Parametric Fuzzy Modelling Framework for Complex Data-Inherent StructuresHempel, Arne-Jens, Bocklisch, Steffen F. 17 September 2009 (has links) (PDF)
The present article dedicates itself to fuzzy modelling
of data-inherent structures. In particular two main points are dealt
with: the introduction of a fuzzy modelling framework and the elaboration
of an automated, data-driven design strategy to model complex
data-inherent structures within this framework.
The innovation concerning the modelling framework lies in the
fact that it is consistently built around a single, generic type of parametrical
and convex membership function. In the first part of the
article this essential building block will be defined and its assets and
shortcomings will be discussed.
The novelty regarding the automated, data-driven design strategy
consist in the conservation of the modelling framework when modelling
complex (nonconvex) data-inherent structures. Instead of applying
current clustering methods the design strategy uses the inverse
of the data structure in order to created a fuzzy model solely based
on convex membership functions.
Throughout the article the whole model design process is illustrated,
section by section, with the help of an academic example.
|
17 |
Modellierung multivariater Abhängigkeitsstrukturen auf Finanzmärkten mit archimedischen und hierarchischen archimedischen Copulas /Savu, Cornelia. January 2007 (has links)
Zugl.: Münster (Westfalen), Universiẗat, Diss., 2007.
|
18 |
The bold fmri signal under anaesthesia and hyperoxiaWibral, Michael. Unknown Date (has links)
Techn. University, Diss., 2007--Darmstadt.
|
19 |
Regionale Unterschiede der Selbstständigkeit in DeutschlandKaden, Julia January 2006 (has links)
Zugl.: Freiberg (Sachsen), Techn. Univ., Diplomarbeit, 2006
|
20 |
Multivariate Copula-Modelle für Finanzmarktdaten : eine simulative und empirische Untersuchung /Köck, Christian. January 2008 (has links)
Zugl.: Erlangen, Nürnberg, Universiẗat, Diss., 2008.
|
Page generated in 0.0718 seconds