• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploratory Visualization of Data Pattern Changes in Multivariate Data Streams

Xie, Zaixian 21 October 2011 (has links)
" More and more researchers are focusing on the management, querying and pattern mining of streaming data. The visualization of streaming data, however, is still a very new topic. Streaming data is very similar to time-series data since each datapoint has a time dimension. Although the latter has been well studied in the area of information visualization, a key characteristic of streaming data, unbounded and large-scale input, is rarely investigated. Moreover, most techniques for visualizing time-series data focus on univariate data and seldom convey multidimensional relationships, which is an important requirement in many application areas. Therefore, it is necessary to develop appropriate techniques for streaming data instead of directly applying time-series visualization techniques to it. As one of the main contributions of this dissertation, I introduce a user-driven approach for the visual analytics of multivariate data streams based on effective visualizations via a combination of windowing and sampling strategies. To help users identify and track how data patterns change over time, not only the current sliding window content but also abstractions of past data in which users are interested are displayed. Sampling is applied within each single time window to help reduce visual clutter as well as preserve data patterns. Sampling ratios scheduled for different windows reflect the degree of user interest in the content. A degree of interest (DOI) function is used to represent a user's interest in different windows of the data. Users can apply two types of pre-defined DOI functions, namely RC (recent change) and PP (periodic phenomena) functions. The developed tool also allows users to interactively adjust DOI functions, in a manner similar to transfer functions in volume visualization, to enable a trial-and-error exploration process. In order to visually convey the change of multidimensional correlations, four layout strategies were designed. User studies showed that three of these are effective techniques for conveying data pattern changes compared to traditional time-series data visualization techniques. Based on this evaluation, a guide for the selection of appropriate layout strategies was derived, considering the characteristics of the targeted datasets and data analysis tasks. Case studies were used to show the effectiveness of DOI functions and the various visualization techniques. A second contribution of this dissertation is a data-driven framework to merge and thus condense time windows having small or no changes and distort the time axis. Only significant changes are shown to users. Pattern vectors are introduced as a compact format for representing the discovered data model. Three views, juxtaposed views, pattern vector views, and pattern change views, were developed for conveying data pattern changes. The first shows more details of the data but needs more canvas space; the last two need much less canvas space via conveying only the pattern parameters, but lose many data details. The experiments showed that the proposed merge algorithms preserves more change information than an intuitive pattern-blind averaging. A user study was also conducted to confirm that the proposed techniques can help users find pattern changes more quickly than via a non-distorted time axis. A third contribution of this dissertation is the history views with related interaction techniques were developed to work under two modes: non-merge and merge. In the former mode, the framework can use natural hierarchical time units or one defined by domain experts to represent timelines. This can help users navigate across long time periods. Grid or virtual calendar views were designed to provide a compact overview for the history data. In addition, MDS pattern starfields, distance maps, and pattern brushes were developed to enable users to quickly investigate the degree of pattern similarity among different time periods. For the merge mode, merge algorithms were applied to selected time windows to generate a merge-based hierarchy. The contiguous time windows having similar patterns are merged first. Users can choose different levels of merging with the tradeoff between more details in the data and less visual clutter in the visualizations. The usability evaluation demonstrated that most participants could understand the concepts of the history views correctly and finished assigned tasks with a high accuracy and relatively fast response time. "
2

Data Triage and Visual Analytics for Scientific Visualization

Lee, Teng-Yok 15 December 2011 (has links)
No description available.
3

Adaptive Prefetching for Visual Data Exploration

Doshi, Punit Rameshchandra 31 January 2003 (has links)
Loading of data from slow persistent memory (disk storage) to main memory represents a bottleneck for current interactive visual data exploration applications, especially when applied to huge volumnes of data. Semantic caching of queries at the client-side is a recently emerging technology that can significantly improve the performance of such systems, though it may not in all cases fully achieve the near real-time responsiveness required by such interactive applications. We hence propose to augment the semantic caching techniques by applying prefetching. That is, the system predicts the user's next requested data and loads the data into the cache as a background process before the next user request is made. Our experimental studies confirm that prefetching indeed achieves performance improvements for interactive visual data exploration. However, a given prefetching technique is not always able to correctly predict changes in a user's navigation pattern. Especially, as different users may have different navigation patterns, implying that the same strategy might fail for a new user. In this research, we tackle this shortcoming by utilizing the adaptation concept of strategy selection to allow the choice of prefetching strategy to change over time both across as well as within one user session. While other adaptive prefetching research has focused on refining a single strategy, we instead have developed a framework that facilitates strategy selection. For this, we explored various metrics to measure performance of prefetching strategies in action and thus guide the adaptive selection process. This work is the first to study caching and prefetching in the context of visual data exploration. In particular, we have implemented and evaluated our proposed approach within XmdvTool, a free-ware visualization system for visually exploring hierarchical multivariate data. We have tested our technique on real user traces gathered by the logging tool of our system as well as on synthetic user traces. Our results confirm that our adaptive approach improves system performance by selecting a good combination of prefetching strategies that adapts to the user's changing navigation patterns.
4

Development of a geovisual analytics environment using parallel coordinates with applications to tropical cyclone trend analysis

Steed, Chad A 13 December 2008 (has links)
A global transformation is being fueled by unprecedented growth in the quality, quantity, and number of different parameters in environmental data through the convergence of several technological advances in data collection and modeling. Although these data hold great potential for helping us understand many complex and, in some cases, life-threatening environmental processes, our ability to generate such data is far outpacing our ability to analyze it. In particular, conventional environmental data analysis tools are inadequate for coping with the size and complexity of these data. As a result, users are forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome these limitations, we must complement the power of computational methods with human knowledge, flexible thinking, imagination, and our capacity for insight by developing visual analysis tools that distill information into the actionable criteria needed for enhanced decision support. In light of said challenges, we have integrated automated statistical analysis capabilities with a highly interactive, multivariate visualization interface to produce a promising approach for visual environmental data analysis. By combining advanced interaction techniques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators, and aerial perspective shading, we provide an enhanced variant of the classical parallel coordinates plot. Furthermore, the system facilitates statistical processes such as stepwise linear regression and correlation analysis to assist in the identification and quantification of the most significant predictors for a particular dependent variable. These capabilities are combined into a unique geovisual analytics system that is demonstrated via a pedagogical case study and three North Atlantic tropical cyclone climate studies using a systematic workflow. In addition to revealing several significant associations between environmental observations and tropical cyclone activity, this research corroborates the notion that enhanced parallel coordinates coupled with statistical analysis can be used for more effective knowledge discovery and confirmation in complex, real-world data sets.

Page generated in 0.1538 seconds