Spelling suggestions: "subject:"multiwall carbon nanotubes"" "subject:"multiwalls carbon nanotubes""
1 |
Charge Transport And Magnetic Properties Of Iron-embedded Multiwall Carbon NanotubesArya, Ved Prakash 01 1900 (has links) (PDF)
Studies on charge transport properties in carbon nanotubes (CNTs) have been a subject of great interest for a long time not only as an important topic in fundamental science, but also as a basic requirement for the application of CNTs for nanoelectronics. CNTs show a wide range of transport behavior that varies from ballistic to hopping regime, depending on the dimensionality and nature of disorder in the system. Minute variations in disorder can lead from weak to strong localization, and this yields complex and intriguing features in the analysis of transport data. It is particularly important to carry out such a study for multiwall carbon nanotubes (MWCNTs), in which both dimensionality and disorder play an important role and the nature of localization is non-trivial as wave functions are extended along the tube or bundle of tubes.
A proper understanding of the mechanisms of charge transport and their quantitative knowledge is an essential requirement for any possible application of CNTs in nanodevices. Such studies not only yield information on the transport parameters crucial for applications but can also provide a test for any possible microscopic theories of transport. Main focus of the current thesis is to understand the mechanism of charge transport in iron-embedded MWCNTs and to gain more knowledge on the transport behavior. Magnetically functionalized CNTs, in particular the CNTs filled with ferromagnetic materials are of profound interest for the basic scientific research as well as for technological application. Iron-embedded MWCNTs are synthesized by one step pyrolysis method. This method gives a proper route to synthesize the magnetic particles encapsulated CNTs. Beyond the geometrical advantage of a cylinder-shaped nanostructure design, the carbon shells provide an effective protection against oxidation of magnetic nanoparticles. The iron-embedded MWCNTs exhibit excellent magnetic properties like the uniaxial magnetic anisotropy, and the high coercivity, which is larger than the coercivity of bulk iron. Thus, they have significant potential for data storage devices and biomedical applications. Vertical alignment of CNTs is an important issue for device applications such as field electron emitters and flat-panel displays. Vertically aligned MWCNTs are grown on various substrates in the present work and the role of catalyst particles in vertical alignment is discussed. This thesis also reports the investigations on the magnetic properties including magnetotransport studies.
The thesis is organized in seven chapters and a brief summary of each chapter is given below.
Chapter 1 presents an introduction of the CNTs and its structural and electronic properties. Charge transport in CNTs is then discussed in terms of the fundamental aspects of conduction regimes and transport length scales.
The synthesis and characterization of iron-embedded MWCNTs is described in chapter 2. It is important to get good quality CNTs in a scalable way. The various methods available for CNT synthesis are arc discharge, laser ablation, chemical vapor deposition etc. A one-step thermally assisted pyrolysis method employed for synthesizing MWCNTs is a simple and cost-effective method. Benzene is used as a precursor and ferrocene as a catalyst in the present case. Good quality CNTs are obtained from this method, which are of multiwall in nature (outer diameter in the range of 10-25 nm). Vertically aligned mats of MWCNTs are also obtained on the quartz substrate. The thickness of the mats is several tens of microns. The prepared MWCNTs are characterized by electron microscopic studies for its structure and surface morphology. Many iron particles are seen inside the tubes. Energy dispersive x-ray (EDX) spectra taken from the small region of the sample under TEM show the presence of iron. Raman spectra of the sample suggest good quality of the tubes. Prominent G-peak in this spectrum shows that the sample is of well-graphitic nature. X-ray diffraction pattern of MWCNT material shows the presence of -Fe and Fe3C apart from the graphitic peak.
Chapter 3 describes the growth of vertically aligned MWCNTs (v-MWCNTs) on various substrates and role of catalyst particles in the alignment. The v-MWCNTs are grown on sapphire, quartz and thermally oxidized silicon substrates without pre-deposition of any catalyst. The grown MWCNT mats had a thickness of several tens of microns. Surface elemental analysis shows the presence of catalyst particles on the substrate which is essential for vertical alignment of the tubes. It is found that the order in which the precursor and the catalyst were introduced during chemical vapor deposition determines the orientation of the nanotubes. When there were no catalyst particles on the substrate in the beginning, random alignment of CNTs took place instead of vertical alignment. Base growth mode of CNTs is proposed in the present case from the results obtained.
Chapter 4 deals with the magnetic properties of the as-synthesized MWCNTs. The CNTs in pristine form are of diamagnetic in nature. The ferromagnetic-like behavior arises from the iron particles embedded in MWCNTs. These ferromagnetic particles are retained in the MWCNTs automatically, as the catalyst in this case contains iron. MWCNTs of different iron weight percentage are prepared by taking different amount of ferrocene as a precursor. These particles exhibit a magnetic moment up to 98 emu/g and coercivity in the range of 500–2000 Oe. Reduced magnetization is attributed to the formation of surface shell with spin disorder and to the presence of Fe3C phase. Large coercivity compared to the bulk vale of few orested is due to the complex state of interactions, which can create strong pinning centers for the core moments during the demagnetization. In addition the observed dependence of the magnetoresistance on the direction of applied field, is correlated with the shape anisotropy of the Fe particles. The trend of saturation of magnetization at higher fields suggests that exchange coupling in the present case is one-dimensional.
The charge transport properties of MWCNT mats are discussed in chapter 5. Many of the transport parameters are often affected by the presence of magnetic field. In order to gain a deeper insight into the conduction mechanism, the study of the electrical transport in presence of magnetic field is highly useful. The temperature and magnetic field dependence of the conductivity of MWCNT mat is studied in the temperature range of 1.4-150 K in the magnetic field up to 10 T. The charge transport in the system is governed by Mott’s variable-range hopping (VRH) of three-dimensional type in the higher temperature range and two-dimensional type in the lower temperature range. Mott’s various parameters like localization length, hopping length, hopping energy, and density of states at the Fermi level are deduced from the VRH fit. The hopping length decreases from 13.2 to 12.2 nm, as temperature increases from 110 to 150 K. The obtained value of hopping length around ~13 nm is within the range of nanotube diameters of 10 to 25 nm. This is the main component of the hopping length, which indicates that VRH takes place on the tube scale. The localization lengths observed in the case of 3D VRH and 2D VRH conduction are well within the range of outer diameter of MWCNTs, which indicates that the localization takes place at the tube scale along the boundaries of the tubes. If the charges are localized at the tube boundaries, then the localization length gives an average diameter of the tubes and the results obtained supports this argument. It is also important to note that the defects present in the nanotubes in the form of structural defects and bad matching of chirality gives rise to localization.
There are not many reports on the effect of a magnetic field on the VRH process for MWCNT systems. The resistance of the sample decreases with the magnetic field in the direction of tube axis of the nanotubes. The magnetic field gives rise to delocalization of states as evident from the values of localization lengths at different fields. The application of magnetic field lowers the crossover temperature, at which three-dimensional VRH turns to two-dimensional VRH. The conductivity at the lower temperature side is governed by the weak localization (WL) give rise to positive magnetoconductance (MC). Here a phase diagram with temperature and magnetic field is proposed, showing different regions for different kind of transport mechanisms. This may be applicable for other class of disordered material as well.
Chapter 6 deals with the magnetotransport studies on disordered MWCNT mat. The electrical conductivity and MC data are analyzed in the temperature range of 1.4-150 K and in the magnetic fields up to 11 T. The system is in the critical regime obeying conductivity of metallic systems as suggested in weak localization-electron electron interaction model. The MC is positive for the whole temperature range except at temperature below 4.2 K. Results are analyzed in the terms of weak localization, electron-electron interaction and VRH. The
H 2 dependence at lower magnetic fields and H dependence at higher magnetic fields is
found supporting weak localization. Inelastic scattering lengths are also deduced from the low temperature MC data and its temperature dependence shows that the dominant dephasing mechanism in the present case is inelastic electron-electron scattering in the dirty limit.
Chapter 7 describes measurements on individual MWCNTs and subsequent charge transport studies. After many trials a suitable method was devised to isolate single tubes and to put contacts on it for the four probe measurement. For electrical measurements on isolated single tube, it is found that the joule heating due to excess current is an important issue. A current of the order of few µA burns the sample immediately. I-V characteristics of the MWCNTs show that the electrical contacts are ohmic and the resistance is few k. Initial electrical measurements show that there is slight decrease in resistance with increase of temperature and MR is approximately negative. This behavior suggests that signature of weak localization is present in the sample. Further studies are required in order to gain the insight into the transport mechanism for individual MWCNT.
Finally, the thesis concludes with a general conclusion and future directions for this
work.
|
2 |
Determining the interwall spacing in carbon nanotubes by using transmission electron microscopy / Undersökning av väggavstånden i kolnanorör med hjälp av transmissions-elektronmikroskopiTyborowski, Tobias January 2016 (has links)
The interwall spacing of multi-walled carbon nanotubes has an effect on their physical and chemical properties. Tubes with larger interwall spacing - compared to the spacing where the carbon atoms are in their natural distance to each other - are for instance expected to be mechanically less stable. Considering the MWCNT interwall spacing’s dependence on the tube size, three interesting previous studies with slightly different conclusions can be found. All of them conclude an increase of the interwall spacing with a decreasing tube size. We describe their analysis procedure, compare them to each other and to our own measured data. In the beginning of our analyses, we determine the expected inaccuracy for measured distances out of TEM images being up to 10 % and we show the impacts of the TEM’s defocus, a powerful setting in TEM imaging. Finally, we suppose that the interwall spacings are not as strongly varying as one previous study concludes, but our analyses are relatively in harmony with the two other studies. The interwall spacings from tubes with an inner diameter larger than 5 nm are relatively constant within the whole tube. Furthermore, it appears that the middle spacings (excluding the outer- and innermost ones) show values that are most consistent with the interlayer spacings of turbostratic graphite. In underfocused images, the outer- and innermost spacings tend to have values being slightly smaller than the middle ones from the same tube.
|
3 |
Surface Modification of Carbon Nanotubes with Conjugated Polyelectrolytes: Fundamental Interactions and Applications in Composite Materials, Nanofibers, Electronics, and PhotovoltaicsEzzeddine, Alaa 10 1900 (has links)
Ever since their discovery, Carbon nanotubes (CNTs) have been renowned to be potential candidates for a variety of applications. Nevertheless, the difficulties accompanied with their dispersion and poor solubility in various solvents have hindered CNTs potential applications. As a result, studies have been developed to address the dispersion problem. The solution is in modifying the surfaces of the nanotubes covalently or non-covalently with a desired dispersant. Various materials have been employed for this purpose out of which polymers are the most common. Non-covalent functionalization of CNTs via polymer wrapping represents an attractive method to obtain a stable and homogenous CNTs dispersion. This method is able to change the surface properties of the nanotubes without destroying their intrinsic structure and preserving their properties.
This thesis explores and studies the surface modification and solublization of pristine single and multiwalled carbon nanotubes via a simple solution mixing technique through non-covalent interactions of CNTs with various anionic and cationic conjugated polyelectrolytes (CPEs). The work includes studying the interaction of various poly(phenylene ethynylene) electrolytes with MWCNTs and an imidazolium functionalized poly(3-hexylthiophene) with SWCNTs. Our work here focuses on the noncovalent modifications of carbon nanotubes using novel CPEs in order to use these resulting CPE/CNT complexes in various applications. Upon modifying the CNTs with the CPEs, the resulting CPE/CNT complex has been proven to be easily dispersed in various organic and aqueous solution with excellent homogeneity and stability for several months. This complex was then used as a nanofiller and was dispersed in another polymer matrix (poly(methyl methacrylate), PMMA). The PMMA/CPE/CNT composite materials were cast or electrospun depending on their desired application. The presence of the CPE modified CNTs in the polymer matrix has been proven to enhance the composites thermal, mechanical and electrical properties compared to pristine CNTs.
Various spectroscopic and microscopic techniques such as UV-vis, fluorescence, TEM, AFM and SEM were used to study and characterize the CPE/CNT complexes. Also, TGA, DSC and DMA were used to study the thermal and mechanical properties of the composite materials.
Our current work represents a fundamental study on the non-covalent interactions between CNTs and CPEs on one hand and gives a real life example on the CPE/CNT application in composite materials and electronics.
|
4 |
Cement paste modified by nano-montmorillonite and carbon nanotubesMousavi, M.A., Sadeghi-Nik, A., Bahari, A., Ashour, Ashraf, Khayat, K.H. 21 January 2022 (has links)
Yes / This paper investigates the coupled effect of functionalized multiwall carbon nanotubes (MWCNTs-COOH), nanomontmorillonite (NM), and sodium dodecyl benzene sulfonate (SDBS) anionic surfactant on compressive and flexural strengths of cement paste. The response surface methodology (RSM) was used to optimize the content of the two nanomaterials and surfactant, and to analyze the effect of their interactions on mechanical properties and microstructural characteristics of the paste. Test results indicate that the simultaneous use of NM and MWCNT can lead to 30% gain in compressive strength and 40% increase in flexural strength. Using analysis of variance, it was possible to predict the optimal weight percentage of nanomaterials. Atomic Force Microscope observations showed that the use of NM and MWCNT can reduce the surface roughness of cement paste and refine porosity, thus reducing the risk of cracking at the cement matrix and improving the homogeneity of the microstructure.
|
5 |
Characterization of ablative properties of thermoplastic polyurethane elastomer nanocompositesLee, Jason Chi-Sing, 1983- 09 February 2011 (has links)
The advancement of each component of aerospace vehicles is necessary as the continual demand for more aggressive missions are created. Improvements in propulsion and guidance system electronics are invaluable; however without material development to protect the vehicle from its environment those advances will not have a practical application. Thermal protection systems (TPS) are required in both external applications; for example on reentry vehicles, as well as in internal applications; to protect the casing of rockets and missiles. This dissertation focuses on a specific type of internal solid rocket motor TPS, ablatives.
Ablatives have been used for decades on aerospace vehicles. To protect the motor from the hostile environment, these materials pyrolyze and char. Both of these mechanisms produce a boundary between the combustion gases and the motor as well as release the heat that the decomposed material has absorbed. These sacrificial materials are intended to protect the casing that it is attached to. With the development of polymer nanocomposites (PNCs) in the last couple of decades, it is of interest to see how these two fields can merge.
Three different nanomaterials (carbon nanofibers, multiwall carbon nanotubes, and nanoclays) are examined to observe how each behaves in environments that simulate the motor firing conditions. These nanomaterials are individually added to a thermoplastic polyurethane elastomer (TPU) at different loadings, creating three distinct families of polymer nanocomposites. To describe a materials ablative performance, a number of material properties must be individually studied; such as thermal, density, porosity, char strength, and rheology. Different experiments are conducted to isolate specific ablative processes in order to identify how each nanomaterial affects the ablative performance.
This dissertation first describes each material and the ablative processes which are characterized by each experiment. Then basic material properties of each family of materials are described. Degradation and flammability experiments then describe the degassing processes. Studies of the material char are then performed after full blown rocket experiments are done. These tests have shown that of the three nanomaterials, nanoclay enhances the TPU ablative performance the most while the CNF provides the least enhancement. / text
|
6 |
MULTIWALL CARBON NANOTUBES ALTER THE THERMAL PROFILE AND ANTIBIOTIC ELUTION OF ORTHOPAEDIC BONE CEMENTTickle, Alison Carroll 01 January 2010 (has links)
Multiwall carbon nanotubes (MWNTs) have extraordinary mechanical and thermal transport properties. They significantly improve the static and dynamic mechanical properties of acrylic orthopaedic bone cement when added to the dry cement polymer powder. Understanding the role MWNTs play on bone cement polymerization temperatures will lead to improved mechanical integrity of the cement-bone interface in joint arthroplasties. It was determined through thermal testing that MWNTs increased the polymerization time of the methylmethacrylate by 45-460% and decreased the peak exothermic temperature of bone cement with and without antibiotics. The flow of heat produced during polymerizing cement was reduced 25-85% with the addition of MWNTs to the cement powder. This decreases the probability of thermal necrosis and “hot” spots caused by high exothermic polymerization temperatures that can destroy the bone adjacent to the cement. These high temperatures also affect the potency and range of antibiotics used in arthroplasty. Isothermal and elution studies determined that MWNTs altered the heat flow and amount of antibiotic release from bone cement during polymerization. Antibiotic elution from bone cement containing MWNTs could match the elution seen in pure cement. The alteration of the flow of heat from bone cement leads to new options for heat-labile antibiotics in total joint arthroplasty.
|
7 |
Low Temperature Charge Transport And Magnetic Properties Of MWNTs/MWNT-Polystyrene CompositesBhatia, Ravi 12 1900 (has links) (PDF)
Carbon nanotubes (CNTs) have been recognized as potential candidates for mainstream device fabrication and technologies. CNTs have become a topic of interest worldwide due to their unique mechanical and electrical properties. In addition, CNTs possess high aspect ratio and low density that make them an important material for various technological applications. The field of carbon nanotube devices is rapidly evolving and attempts have been made to use CNTs in the fabrication of devices like field emitters, gas sensors, flow meters, batteries, CNT-field effect transistors etc. These molecular nanostructures are proposed to be an efficient hydrogen storage material. CNT cylindrical membranes are reported to be used as filters for the elimination of multiple components of heavy hydrocarbons from petroleum and for the filtration of bacterial contaminants of size less than 25 nm from water. Recently, CNT bundles have been proposed to be a good material for low-temperature sensing.
CNTs have also been considered as promising filler materials due to extraordinary characteristics mentioned above. Fabrication of nanocomposites using CNTs as reinforcing material has completely renewed the research interest in polymer composites. The conductive and absorptive properties of insulating polymer doped with conducting filler are sensitive to the exposure to gas vapors and hence they can be used in monitoring various gases. The application of fiibre reinforced polymer composites in aeronautic industry are well known due to their high mechanical strength and light weight. Also, the conductive composite materials can be used for electromagnetic shielding. Desired properties in CNT-composites can be attained by adding small amount of CNTs in comparison to traditional filler materials. Due to high aspect ratio and low density of CNTs, percolation threshold in CNT-polymer composites can be achieved at 0.1 vol % as compared to ~16 vol. % in case of carbon particles. The research work 0.1 vol. %, as compared to reported in this thesis includes the preparation of multiwall carbon nanotube (MWNTs) and MWNT-polystyrene composites, experimental investigations on low temperature charge transport, and magnetic properties in these systems.
This thesis contains 7 chapters.
Chapter 1 provides an overview of CNTs and CNT-polymer composites. This chapter briefly describes the methods for synthesizing CNTs and fabricating CNT-polymer composites, charge transport mechanisms in CNTs and composites, and their magnetic properties as well.
Chapter 2 deals with the concise introduction of various structural characterization tools and experimental techniques employed in the present work. An adequate knowledge of the strengths and limitations of experimental equipment can help in gathering necessary information about the sample, which helps in studying and interpreting its physical properties correctly.
Chapter 3 describes the synthesis of MWNTs and their use as filler material for the fabrication of composites with polystyrene (PS). The characterization results of as-prepared MWNT and composites show that MWNTs possess high aspect ratio (~4000), and are well dispersed in the composite samples (thickness ~50-70 µm). The composite samples are prepared by varying the MWNT concentration from 0.1 to 15 wt %. The as¬fabricated composites are electrically conductive and expected to display novel magnetic properties since MWNTs are embedded with iron (Fe) nanoparticles.
Chapter 4 presents the study of charge transport properties of aligned and random MWNTs in the temperature range 300-1.4 K. The low temperature electrical conductivity follows the weak localization (WL) and electron-electron (e-e) interaction model in both samples. The dominance of WL and e-e interaction is further verified by magneto-conductance (MC) measurements in the perpendicular magnetic field up to 11 T at low temperatures. The MC data of these samples consists of both positive and negative contributions, which originates from WL (at lower fields and higher temperatures) and e-e interaction (at higher fields and lower temperatures).
Chapter 5 contains the results of charge transport studies in MWNT-PS composite near the percolation threshold (~0.4 wt %) at low temperatures down to 1.4 K. Metallic-like transport behavior is observed in composite sample of 0.4 wt %, which is quite unusual. In general, the usual activated transport is observed for systems near the percolation threshold. The unusual weak temperature dependence of conductivity in MWNT-PS sample at percolation threshold is further verified from the negligible frequency dependence of conductivity, in the temperature range from 300 to 5 K.
Chapter 6 accounts on the experimental results of magnetization studies of MWNTs and MWNT-PS composites. The observation of maxima in coercivity and squareness ratio at 1 wt % of Fe-MWNT in a polymer matrix show the dominance of dipolar interactions among the encapsulated Fe-nanorods within MWNTs. The hysteresis loop of 0.1 wt % sample shows anomalous narrowing at low temperatures, which is due to significant contribution from shape anisotropy of Fe-nanorods.
Chapter 7 presents brief summary and future perspectives of the research work reported in the thesis.
|
8 |
Specific and non-specific interactions on carbon material surfacesAndreu, Aurik Yann January 2010 (has links)
The interactions which occur between both polar and non-polar fluid phases and surfaces of various carbon materials: Activated Carbon (AC), non-porous Carbon Black (CB) and Multiwall Carbon Nanotubes (MWCNTs)with different surface chemistry have been studied. These are currently of great interest as they govern the interfacial behaviour of carbons in a wide range of applications; separation adn composite technologies being two prime examples. Consequently, techniques for chemical modification of carbon surfaces ar also of interest. Surface oxygen functional groups have been introduced, or modified, using the following oxidation techniques: liquid-phase oxidation (both AC and CB), Fenton and Birch reduction treatment (MWCNTs) and in a more controlled manner using gas-phase ozone treatment (CB). The chemistry of all the resulting carbon surfaces were characterised using X-ray Photoelectron Spectroscopy (XPS), which gives a quick and direct quantitative measure of the external surface composition. This technique, which has not yet been extensively employed in detailed adsorption studies, is a promising alternative to Temperature Programmed Desorption (TPD) and Boehm titration method in the determination of oxygen and other surface groups. Physical effects of the various surface modifications have been studied using a variety of techniques appropriate for the material in question. Scanning Electron Microscopy (SEM) images show some deteriorating effects of the liquid-phase oxidations on the structure of both activated carbon and carbon black materials. Conversely, surface areas from nitrogen adsorption at 77oK, coupled witj immersion calorimetry data for toluene, show thet the physical structure of the carbon blacks is not modified by ozone treatment. This has allowed a detailed study of the effects of surface oxygen level (i.e. polarity) on vapour adsorption. Regarding the MWCNT materials, detailed High-Resolution Electron Microscopy (HRTEM) photographs show that the multi-wall structure of the nanotubes in not significantly disrupted during the introduction of active functional groups by the Fenton or Birch treatment and therefore keeping intact their mechanical properties which augurs well for their use as reinforcement in composite structures whilst also improving their dispersion properties in polar fluids. A systematic shift to higher adsorption values, due to the increasing specific interactions between the alcohol -OH groups and the surface oxygen groups, is observed in all the isotherms of alcohols from the CB series as the total surface oxygen concentration ([O]T) increases. Moreover, this effect was observed to be most significant for methanol confirming that the mechanism of adsorption is dominated by hydrogen bonding and therefore dependant on the surface concentration of oxygen sites; whereas it becomes less marked in the case of ethanol and isopropanol respectively due to the increasing non-specific, dispersion, interactions of the alkyl chain with the non-polar carbon surface. Overall correlations were observed between the surface oxygen concentration [O]T, the resulting enthalpy of immersion -^Hi values and the characteristic energy E of the Dubinin-Radushkevich-Kaganer (DRK) equation obtained for toluene and these alcohols and the influence of the carbon surface chemistry on the character of the adsorption isotherms is also discussed. This behaviour is also observed and much more pronounced in the case of water adsorption on other oxidised carbon materials (AC, CB and MWCNT) due to the higher polarity of water molecules. The water adsorption data were analysed using in particular the Dubinin-Serpinsky (DS) equation and also some of its recent variations such as Barton and D'Arcy & Watt equations. The DS2 and various Barton equations were found to fit best the AC and CB materials modified by liquid-phase oxidations and also for the CB 03 series with increasing level of oxidation while both D'Arcy & Watt equations gave the best fittings for the MWCNTs materials. It was also shown that the resulting parameters ao (for the DS equation) describing the surface concentration of primary polar adsorption sites and as the limiting water adsorption value were both linked to the surface oxygen level [O]T. Regarding interfacial bonding, the oxidised CB and MWCNT materials are expected to show an improved physicochemical wetting of their surfaces by various resin compunds
|
9 |
Rational Design of Advanced Hybrid Nanostructures for Catalysis and ElectrocatalysisBarman, Barun Kumar January 2016 (has links) (PDF)
The hybrid nanostructures exhibit excellent performances in various fields such as catalysis, sensing, and energy conversion as compared to their individual ones. The thesis deals with the new methods for the synthesis of different type of hybrids with doped/pristine carbon nanostructures in the form of graphene, multiwall carbon nanotubes (MWCNTs) as one component and metals nanostructures (Ag, Pd, Pt and Au), carbide (Fe3C), metal chalcogenides (Ni3S2 and Co9S8) and oxide (CoO) as the other components. Various synthesis techniques such as modified galvanic replacement reaction at room temperature, hydrothermal, microwave and pyrolysis have been explored for the synthesis of different hybrid nanostructures. Furthermore, various hybrid nanostructures have been explored for various catalytic activities such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and 4-nitrophenol (4-NP) reduction. It may be noted that the ORR and OER which are undoubtedly vital for their applications in fuel cells, metal-air batteries and water oxidation reaction. Interestingly, the catalytic activities of these hybrid nanostructures are comparable or better as compared to the commercial benchmark precious catalysts.
|
10 |
Characterization of chemical and mechanical properties of polymer based nanocompositesWafy, Tamer January 2013 (has links)
One of the most significant issues in nanocomposite performance is improving the dispersion of carbon nanotubes (CNTs) in thermosetting or thermoplastic polymers in order to gain good mechanical properties. Several studies have investigated the fabrication of nanocomposites based on carbon nanotubes and analysed properties, but there is still insufficient data on their structure-property relationships. This thesis has investigated the central importance of stress transfer Raman studies in epoxy composites reinforced with single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs) and multiwall carbon nanotubes (MWCNTs) to elucidate the reinforcing ability of the CNTs in an epoxy matrix. This project was undertaken to synthesise and characterize MWCNTs and determine the effect of different weight fractions of untreated MWCNTs on the stress transfer efficiency at the MWCNTS / epoxy interface and on the stiffness of the thermomechanical properties of the MWCNTS / epoxy composites. It was undertaken to assess the stress transfer efficiency at the CNT / epoxy interface and at the inter-walls of the CNTs with tensile deformation and with cyclic loading.Optimized conditions of the injection chemical vapour deposition method (CVD), such as long injection times were applied to produce MWCNTs with a high yield, high aspect ratio and well-defined G' Raman peak. The morphology and size of CNTs were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) while their thermal stability was examined by Thermogravimetric analysis (TGA). Both Raman spectroscopy and mechanical testing (static and dynamic) were utilized in this study. The Raman spectroscopy research consisted of following the G'-band frequency and linewidth as well as the intensity of radial breathing modes (RBMs) during tensile deformation. The stress-induced Raman shifts in the nanocomposites have been shown to be controlled by the number of carbon nanolayers. A theory has been developed to determine and simulate the stress transfer efficiency parameter, (k_i) for MWCNTs. Tensile tests and dynamic mechanical testing were used to assess the mechanical properties of the nanocomposites.The most obvious finding to be drawn from the present study is that the reinforcement of the epoxy resin with different loadings of MWCNTs is useful, but the best reinforcement was at low loadings of MWCNTs. One of the more significant findings to emerge from this study is that (k_i) between the inner walls of the DWCNTs and MWCNTs are quite similar (~0.7), which suggest that (k_i) may be similar for all CVD MWCNTs and DWCNTs. The second major finding was that there were RBM intensity variations for the SWCNTs and DWCNTs in the hot-cured epoxy composites and that for the DWCNTs both the inner and outer nanotube walls are stressed during deformation
|
Page generated in 0.081 seconds