• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the origin of the Murchison meteorite phosphonates. Implications for pre-biotic chemistry.

Gorrell, I.B., Wang, Liming, Marks, Alison J., Bryant, D.E., Bouillot, F, Goddard, A, Heard, D.E., Kee, T.P. January 2006 (has links)
No / Ab initio calculations, combined with experimental studies on the anaerobic hydrolysis of phosphaalkynes under thermal and photochemical conditions suggest a potential, exogenous source of reduced oxidation state phosphorus for the early Earth.
2

Carbonate alteration of serpentinite in the Murchison Greenstone Belt, Kaapvaal craton : implications for gold mineralization.

Madisha, Moropa Ebenezer 15 August 2012 (has links)
M.Sc. / Please refer to full text to view abstract
3

Geophysical exploration at the Comet Gold Mine, Western Australia

Chenrai, Piyaphong January 2008 (has links)
The Comet Gold Mine is in the Murchison mineral field which lies within the Yilgarn Craton of Western Australia. Several different geophysical methods were used in this study to define the geophysical signatures of sedimentary iron formations (SIF) and altered basalt associated with gold mineralisation. The geophysical surveys carried out at the Comet Gold Mine were gravity, sub-audio magnetics (SAM), transient electromagnetics (TEM) and downhole geophysical logging. Data from previous geophysical surveying were also used, and these included highresolution aeromagnetics and TEMPEST airborne electromagnetics. Other exploration information, such as geology and drillhole data, were integrated with geophysical results to study the geophysical responses and generate a geophysical interpretation map. / The main aim of this study was to generate an understanding of the various geophysical responses of geology and gold mineralisation in the Comet Mine area for future gold exploration in this region. Particularly, the study focused on the ability of the SAM method to map out geology and geophysical response for gold mineralisation. The response from SAM surveying has been investigated over an area of 13 sq kms. The SAM surveying was completed using a transmitter current of 5-8 Amp with a 50% duty cycle at 4 Hz frequency, which was considered the best setting for the Comet area. The SAM anomalies were compared to results from other geophysical methods. The results of all geophysical surveying suggested that the TEM method was also effective for identifying altered sulphide and magnetic altered rock associated with gold mineralisation. / Experiments were carried out using SAM surveying with electrodes in standard surface pits and pits placed directly into the gold mineralised structure. Both surveys showed very similar results, so in this area, surface electrode pits work well for current injection during SAM surveys. The similarities are probably due to the lack of conductive regolith cover in the Comet Mine area. / The SAM response was studied for survey grids using different electrode positions and directions. Experiments in changing SAM electrode position over the same area were carried out along and across geological strike to detect the different geological structure directions. The EQMMR response was different for electrodes oriented at 90º when surveys were repeated over the same area. SAM mainly measures conductive features running sub-parallel to the electrode direction, but the EQMMIP response was mostly the same, despite the difference in electrode direction. In addition, the EQMMIP result was very similar for rotated grids, with some distortion occurring around the main EQMMR anomaly near the Venus open cut pit. Therefore, SAM chargeability was not strongly polarised along the electrode direction like the EQMMR response. This is consistent with the theory of MIP that the method detects the effect of induced polarisation in the earth by virtue of the magnetic fields associated with current flow in polarisable bodies within the earth. / Gravity data were collected along in 4 transects 500 m apart and at 50 m station spacing. 3D gravity modelling using polygonal shapes was completed to a good fit with felsic and mafic rocks by having rock units dip to the SE. Euler depth solution calculations were applied to locate contacts and deep gravity sources. Gravity surveying has also proved to be a useful survey method for geological mapping and locating regional structures. / Ground TEM survey data were used at the Venus prospect to map out conductive zones at depths ranging from 30 to 90 m. All anomaly bodies were interpreted to have a SE dip. The modelled ground TEM results were compared to TEMPEST airborne electromagnetic conductivity depth slices. Both EM survey results showed reasonably similar patterns, but the ground TEM method provided more reliable conductor locations and depth estimations that correlated well with the drilling information and downhole conductivity logging. / Geophysical logs of natural gamma and inductive conductivity were surveyed in 5 drillholes that intersected gold alteration zones. The alteration zones associated with gold mineralised sediments, sulphide and magnetic minerals were identified in the downhole logs as increased conductivity, with a sight increase in the natural gamma response. Natural gamma was usually high above a background of host rock in the gold mineralised shear zones. This was likely due to K associated with the clay rich SIF units, and sericite and biotite from gold related alteration. During this study, drillhole CTRC028 was drilled into a modelled TEM anomaly, and gold mineralised SIF was intersected at the predicted location from the model. / Geophysical survey information (magnetics, gravity, SAM and TEM) and anomalies in the Comet area were found to be primarily controlled by the local structures and mineralisation along these structures. Modelled ground TEM results were compared to TEMPEST airborne, EM data and showed reasonably similar patterns. The geophysical survey data also highlights black shale units, which can produce a false target commonly running parallel to the sulphide altered fault zones and SIF units, because of graphite and sulphide in the black shale. / The TEMPEST data were a valuable guide to bedrock conductivity over the outline project area at Comet, and the follow–up ground TEM and SAM survey data was very useful for accurately pin-pointing anomalies for drill testing. / Geophysical and geological data analysed in this study was used to generate a geophysical interpretation map at 1:5,000 scale. The new interpretation of geological units and structures at Comet will provide geologists with a better understand about the geological and structural setting for mineralisation in the Comet area. For example, the Comet Fault represents a faulted limb of the Comet fold structure that has both limbs dipping to the SE, and plunges to the NE. Magnetic anomalies associated with SIF are considered to correlate with some gold bearing horizons and the location of the Comet Fault, that has become more siliceous and altered by sulphide minerals and magnetite minerals. / It is recommended that other prospect areas in the region should be surveyed using the SAM method in order to identify shallow gold bearing structures and improve geological interpretations ahead of drilling.
4

Characteristics and sorption properties of charcoal in soil with a specific study of the charcoal in an arid region soil of Western Australia

McMahon, Claire Louise January 2006 (has links)
[Truncated abstract] Fire creates charcoal from the partial burning of biomass which results in a biologically inert form of carbonaceous (non-living) organic matter that, once integrated into soil and sediments, can persist for long periods of time. Charcoal has a large surface area with a high sorptive capacity for organic and inorganic substances. As a repository for metal and non-metal elements charcoal has been given little, if any, attention in the fields of geochemistry, agriculture and environmental monitoring . . . Despite the differences in charcoal surface area, soil charcoal achieved nearly 100% sorption of 0.5 and 5 μg/g Au from 0.03 M NaCl and 0.01M Ca(NO3)2 solution, almost independent of solution pH. At low pH, charcoal sorbed between 10 and 60% of Cu with initial additions of 2 and 20 μg Cu/g. Similarly, between 15 and 40% of Zn was sorbed by charcoal with initial additions of 5 and 40 μg Zn/g. The role of surface area in sorption of elements by charcoal is clearly only one factor that is important. Charcoal aromatic and aliphatic chemical functional groups, which can be distinguished from other forms of organic matter through spectroscopic determination, are also important in charcoal’s capacity to sorb elements. Accumulation of Be, B, Na, Mg, Al, Si, K, Ca, Ti, Mn, Co, Ni, Cu, Se, Mo, Ba, Au and Pb (out of a range of 29 elements) in soil charcoal, above the concentrations in the matrix soil and plant reference charcoal, was confirmed by ICP-MS analysis. Concentrations of V, Mn, Co, Ni, Cu, Mo, Ba, Au, Pb and Bi were higher in soil charcoal than in values quoted for gossans and pisolites in the field area region (Smith and Perdrix, 1983). Higher values of Au in soil charcoal were associated with considerable amounts of included clay minerals and higher values of other elements including Mo, Mn and Fe.
5

Investigating the effects of space weathering on carbon-rich asteroidal regoliths through analysis of experimental analogs

Dara Laczniak (16655169) 01 August 2023 (has links)
<p>Space weathering refers to the gradual spectral, microstructural, and chemical alteration of airless planetary regoliths due to their exposure to the harsh environment of outer space. Solar wind irradiation and micrometeoroid impacts are the primary space weathering processes at work in our solar system. Although the microstructural and compositional effects of space weathering are small, occurring at the sub-micron scale in individual regolith grains, their collective impact on the spectral signature of planetary surfaces is critical. Space weathering is known to change the slope, albedo, and strength of absorption band features of reflectance spectra acquired by ground- and spacecraft-based instrumentation. In this way, space weathering impedes our ability to determine planetary surface compositions from remote sensing data and pair meteorites with their parent bodies. Thanks to decades of research since the Apollo sample return missions, the planetary science community has developed a comprehensive understanding of how space weathering alters the Moon and silicate-rich asteroids. However, the effects of space weathering on primitive, carbon-rich asteroids—which dominate the outer main belt—are more poorly constrained and very complex. This dissertation aims to improve our understanding of how solar wind irradiation and micrometeoroid bombardment modifies the spectral, microstructural, and chemical properties of carbonaceous asteroidal regoliths. To accomplish this goal, this research experimentally simulates constituent space weathering processes in the laboratory on carbon-rich analog materials. A multi-faceted analytical approach including a variety of electron microscopy and spectroscopic techniques is used to probe the spectral, microstructural, and chemical changes induced by experimental space weathering.</p><p>Chapter 1 of this dissertation provides an introduction to space weathering, including a description of the current state of knowledge in the field as well as the motivation for this research. Similarly, chapter 2 provides an overview of the various experimental simulations and coordinated analytical techniques employed in this work. Chapter 3 initiates the discussion of research accomplished during this doctoral program, presenting a detailed characterization of the spectral, microstructural, and chemical effects derived from simulated solar wind irradiation of a carbonaceous asteroid analog material. More specifically, in chapter 1, I perform high flux (~1013 ions/cm2/s), high fluence (1018 ions/cm2) 1 keV H+ and 4 keV He+ irradiation experiments on the Murchison meteorite. Chapter 2 investigates the role of incident ion flux in solar wind space weathering of carbonaceous asteroidal regolith by performing a set of low flux (~1011 ions/cm2/s) and high flux (~1013 ions/cm2/s) H+ and He+ irradiation experiments on Murchison samples. These experiments are the lowest flux solar wind simulations carried out, to date. Finally, chapter 5 presents results from the first <i>combined</i> ion irradiation and heating experiments performed on a carbon-rich analog using in situ transmission electron microscopy (TEM). In situ TEM is a relatively novel technique in the planetary and geological sciences which allows users to observe the physiochemical changes caused by an external stimuli in <i>real time</i>. The experimental approach used in chapter 5 simulates both solar wind irradiation and micrometeoroid impacts, and, thus, probes the cumulative microstructural and compositional modifications induced by these concurrent space weathering processes. In chapters 3 through 5, I compare my results to previous space weathering simulations and observations of lunar and asteroidal returned samples. Findings from this dissertation advance the existing model of space weathering on carbon-rich asteroids, help inform remote sensing observations from the Hayabusa2 and OSIRIS-REx missions which have rendezvoused with C-complex asteroids Bennu and Ryugu, respectively, and provide experimental ground-truth for analyzing returned samples from these missions.</p>
6

Datation et caractérisation de processus minéralisateurs à l'Archéen : Application à l'Antimony Line, Ceinture de Roches Vertes de Murchison, Afrique du Sud

Jaguin, Justine 07 December 2012 (has links) (PDF)
Les circulations de fluides dans la croûte sont les vecteurs de mobilités élémentaires dont une des conséquences est la concentration de métaux et la genèse de gisements. Ces fluides circulent dans les zones de déformation où ils modifient la composition des roches encaissantes. Dans la ceinture archéenne de roches vertes de Murchison (Afrique du Sud), l'Antimony Line est une zone déformée qui a été le siège de circulations de fluides minéralisateurs en Sb-Au. Pour caractériser les processus minéralisateurs, des données pétro-géochimiques, en particulier en isotopes stables et inclusions fluides, ont été associées à la datation multi-méthode (U-Th-Pb, Pb-Pb et Ar-Ar) des corps minéralisés et de leur encaissant au cœur et autour de l'Antimony Line. L'étude structurale de la région souligne le caractère distribué de la déformation. La ceinture a ainsi subi une phase majeure de collision d'arc, associée à un magmatisme important vers 2.97 Ga, contemporain d'une minéralisation en Au (±Sb) qui pourrait être responsable d'une phase de pré-enrichissement en Sb. La minéralisation principale en Sb est la conséquence de la circulation d'un fluide métamorphique à H2O-CO2, à 2-3 kbar et 350-450°C. L'albitisation de granitoïdes intrusifs dans l'Antimony Line, datée à 2.8 Ga, est génétiquement liée à cette circulation, laquelle s'inscrit donc dans l'histoire tectono-métamorphique tardive de la ceinture et est contemporaine de la mise en place de leucogranites sur la bordure sud. Ces résultats illustrent la pertinence du couplage pétro-géochimie/géochronologie pour la compréhension globale d'un système métallogénique.

Page generated in 0.0548 seconds