• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Transcriptional regulation of MuRF1 in skeletal muscle atrophy

Bois, Philipp Du 10 December 2014 (has links)
Die Komposition der Skelettmuskulatur resultiert aus der fein abgestimmten Balance von Proteinauf- und Abbaumechanismen. Die Skelettmuskelatrophie kann in verschiedenen Situationen entstehen bzw. von diversen Krankheiten ausgelöst werden (Altern, Hunger, Krebs, Nervenschädigung, Kachexie) und ist meist die Folge von gesteigertem Proteinabbau, der die Proteinsynthese überwiegt. Der Muskelabbau ist physiologisch teilweise sinnvoll und dient der Notversorgung von lebenswichtigen Organen mit Lipiden, Aminosäuren und Glukose. Insgesamt ist eine funktionsfähige Muskulatur sehr wichtig, sowohl für Gesunde als auch Erkrankte, da bei Muskelatrophie auslösenden Erkrankungen das Gesamtüberleben wesentlich verringert ist und die Lebensqualität der Patienten enorm reduziert ist. Der Abbau von strukturellen Muskelproteinen wurde hauptsächlich dem Ubiquitin-Proteasom System zugeschrieben, dessen Regulation und von seinen einzelnen Enzymen muss genauestens verstanden sein, um in der Zukunft zielgerichtete Therapien entwickeln zu können. Eines der zentralen Enzyme in der Skelett- und Herzmuskelatrophie ist die E3 Ubiquitin Ligase MuRF1. In nahezu allen Modellen für Muskelatrophie wurde eine starke Zunahme der Expression von MuRF1 beschrieben. Betrachtet man die sehr zentrale Rolle von MuRF1 im UPS, dort vermittelt MuRF1 den Abbau von strukturellen Proteinen des Sarkomers, und der beobachteten starken Regulation bei diversen Atrophie-Modellen, wird klar, wie wichtig das Verständnis der transkriptionellen Regulation von MuRF1 selbst ist. In den letzten Jahren wurden bereits einige Transkriptionsfaktoren identifiziert, die an der Regulation von MuRF1 bei verschiedenen Atrophie-Modellen beteiligt sind, die Studien zeigten aber auch, dass noch nicht alle Modelle erklärt werden konnten. Um die verbleibenden Wissenslücken zu füllen, wurde in dieser Studie nach neuen transkriptionellen Regulatoren von MuRF1 gesucht und deren Beteiligung an bereits bekannten Signalwegen analysiert. / Skeletal muscle mass is permanently balanced as a result of fine tuned protein synthesis and degradation mechanisms. Skeletal muscle atrophy occurs when protein degradation exceeds protein synthesis, which happens in a variety of conditions, such as aging, starvation, cancer, cachexia or denervation. Degradation of muscle mass can sometimes be useful, e.g. as source for lipids, amino acids and glucose in case of critical malnutrition as well as several other physiological conditions. But a solid composition and thereby functional maintenance of muscles is necessary for healthy individuals as well as individuals suffering from atrophy releasing diseases as to retain their mobility and to preserve full heart functions. Since degradation of structural proteins in muscle tissue has been addressed mainly to the ubiquitin-proteasome-system, the regulation of the participating components needs to be understood in detail to develop constructive treatments and therapies for atrophy prevention. One of the key enzymes in skeletal and heart muscle atrophy is the E3 ubiquitin ligase MuRF1. Its expression levels and protein content was found to be elevated in almost every know atrophy model. MuRF1 is very critical for the muscles composition and thus their functional integrity, as it marks and initiates degradation of structural and contractile proteins via the UPS. Since MuRF1 plays a prominent role in muscle atrophy, its transcriptional regulation needs to be well understood to develop effective therapies for all the different atrophy models MuRF1 has been linked to. Several transcription factors have been identified to regulate MuRF1 at different ratios and in diverse atrophy models. Importantly, they do not explain all MuRF1 inducing events observed. To fill some of the remaining knowledge gaps, the studies aims were to find new transcriptional regulators for MuRF1 and to analyze potential involvements of the obtained candidates in pathways affecting skeletal muscle atrophy.
12

The Role of Muscle and Nerve in Spinal Muscular Atrophy

Iyer, Chitra C. 07 June 2016 (has links)
No description available.

Page generated in 0.0385 seconds