Spelling suggestions: "subject:"muscle fatigue 2analysis"" "subject:"muscle fatigue 3analysis""
1 |
MUSCLE FATIGUE ANALYSIS IN MINIMALLY INVASIVE SURGERYPanahi, Ali 01 December 2016 (has links)
Due to its inherent complexity such as limited work volume and degree of freedom, minimally invasive surgery (MIS) is ergonomically challenging to surgeons than traditional open surgery. Specifically, MIS can expose performing surgeons to excessive ergonomic risks including muscle fatigue that may lead to critical errors in surgical procedures. Therefore, detecting the vulnerable muscles and time-to-fatigue during MIS is of great importance in order to prevent these errors. In this research, different surgical skill and ergonomic assessment methods are reviewed and their advantages and disadvantages are studied. According to the literature review, which is included in chapter 1, some of these methods are subjective and those that are objective provide inconsistent results. Muscle fatigue analysis has shown promising results for skill and ergonomic assessments. However, due to the data analysis issues, this analysis has only been successful in intense working conditions. The goal of this research is to apply an appropriate data analysis method to minimally invasive surgical setting which is considered as a low-force muscle activity. Therefore, surface electromyography is used to record muscle activations of subjects while they performed various real laparoscopic operations and dry lab surgical tasks. The muscle activation data is then reconstructed using Recurrence Quantification Analysis (RQA), which has been proven to be a reliable analysis, to detect possible signs of muscle fatigue on different muscle groups. The results of this data analysis method is validated using subjective fatigue assessment method. In order to study the effect of muscle fatigue on subject’s performance, standard Fundamental of Laparoscopic Surgery (FLS) tasks performance analysis is used.
|
2 |
Muscle Fatigue Analysis During Dyanamic ConractionMishra, Ram Kinker 09 1900 (has links) (PDF)
In the field of ergonomics, biomechanics, sports and rehabilitation muscle fatigue is regarded as an important aspect since muscle fatigue is considered to be one of the main reasons for musculoskeletal disorders. Classical signal processing techniques used to understand muscle behavior are mainly based on spectral based parameters estimation, and mostly applied during static contraction and the signal must be stationary within the analysis window; otherwise, the resulting spectrum will make little physical sense. Furthermore, the shape and size of the analysis window also directly affect the spectral estimation. But fatigue analysis in dynamic conditions is of utmost requirement because of its daily life applicability. It is really difficult to consistently find the muscle fatigue during dynamic contraction due to the inherent non-stationary nature and associated noise in the signal along with complex physiological changes in muscles. Nowadays, in addition to linear signal processing, different non-linear signal processing techniques are adopted to find out the consistent and robust indicator for muscle fatigue under dynamic condition considering the high degree of non-linearity (caused by functional interference between different muscles, changes of signal sources and paths to recording electrodes, variable electrode interface etc.) in the signal. In this work, various linear and nonlinear-non-stationary signal processing methods, applied on surface EMG signal for muscular fatigue analysis under dynamic contraction are studied. In present study, surface EMG (sEMG) signals are recorded from Biceps Brachii muscles from eight (N=8) physically active college students during dynamic lifting 7 kg load at the rate of 20 lifts/min till they become fatigue. EMG data is processed in two ways -1. taking the whole EMG response and 2. breaking into three ranges of contraction (0-45)o, (45-90)o and >90o, to study better response region. It is observed that in spectral estimation techniques auto-regressive (AR) based spectral estimation technique gives better frequency resolution than periodogram for small epochs, as AR is based on parametric estimation. Both the previous methods provide only the frequency information in the signal. In order to estimate the time varying nature of frequency content in a signal various time-frequency signal processing techniques are used like – Short Time-Fourier Transform (STFT), Smoothed pseudo
Wigner-Ville (SPWD), Choi-William distribution (CWD), Continuous Wavelet Transform (CWT), Huang-Hilbert Transform (HHT) and Recurrence Quantification Analysis (RQA) are used. The last two techniques are used by considering the EMG signal as non-linear and non-stationary signals. Among these techniques, STFT is the simplest time-frequency analysis technique. But tradeoff between time and frequency resolution is the major constraint in STFT, therefore, a window length of 256 samples are considered in this study. In order to tackle time-frequency resolution problem different Cohen-class distribution techniques are used like SPWD and CWD, where the result is severely affected by the presence of interference terms which make its interpretation really difficult. Different adaptive filters are used in SPWD and CWD to suppress these interference terms during analysis. Among these time-frequency analysis techniques continuous wavelet transform provides the most accurate results in comparison to other time-frequency analysis techniques. Similar result is obtained in present study. This fatigue response is further improved using non-linear and non-stationary techniques like HHT and RQA. HHT shows less variation in frequency response than CWT analysis result. Percentage of determinism calculated using recurrence quantification analysis method is found to be more sensitive than mean frequency estimation. Therefore, non-linear and non-stationary signal processing techniques are to be better indicator of muscle fatigue during dynamic contraction.
|
Page generated in 0.0661 seconds