• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 4
  • 1
  • 1
  • Tagged with
  • 119
  • 119
  • 20
  • 18
  • 15
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the assembly and topography of proteins in the muscle myofibril

Turner, Robert Craig. January 1980 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1980. / Typescript. Vita. Description based on print version record. Includes bibliographical references.
2

Quantitative relationships of the myofibrillar proteins myosin, actin and the troponin subunits

Yates, Lawrence Davis. January 1982 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1982. / Typescript. Vita. Includes bibliographical references (leaves 61-67).
3

Immunofluorescence studies of normal and hyperthyroxic chicken skeletal muscle using anti-myosins

Carpenter, Charles Edward. January 1984 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1984. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 94-101).
4

Analysis of Bves function through identification of interacting proteins

Smith, Travis Kirk. January 2007 (has links)
Thesis (Ph. D. in Cell and Developmental Biology)--Vanderbilt University, May 2007. / Title from title screen. Includes bibliographical references.
5

Molecular dissection of myosin light chain function

Rowe, Tony January 1993 (has links)
No description available.
6

Protein isoform-function relationships of single skeletal muscle fibers from weight-bearing and hindlimb suspended mice

Stelzer, Julian E. (Julian Emanuel) 20 May 2002 (has links)
The goals of this research were to a) characterize the protein-function relationships of skeletal muscle single fibers from the mouse hindlimb b) examine mouse-strain related differences in myosin heavy chain composition (MHC) and single fiber contractile function, and c) quantify changes in fiber size and contractile function in response to 7 days of non-weight bearing. This research is significant because mechanistic approaches to understanding relationships between muscle protein expression, contractile function, and mechanical loading will likely benefit from a transition from the traditional laboratory rat to genetically modified mouse models. The methods used in this research feature an in vitro skinned-fiber preparation and single-fiber gel electrophoresis. Hindlimb muscles of mice were excised, and dissected into smaller bundles from which single muscle fibers were isolated. Single fibers were placed in skinning solution that permeabilized the fiber's membrane. The ends of skinned single muscle segments were attached to stainless steel troughs, which were connected to an isometric force transducer and a direct-current position motor. This system allowed the measurement of the fiber's cross-sectional area (CSA), peak isometric force (P���), and unloaded maximal shortening velocity (V���) during maximal Ca�����-activating. The identification of the fiber's MHC content was subsequently achieved by electrophoresis of a sample of each fiber segment. The results showed that the C57BL/6 mouse soleus muscle contains a MHC composition (20% type I) that is dramatically different than the ICR and CBA/J mouse strains (50% type I, respectively). Type I fibers from the C57BL/6 mouse had V��� that was 25% lower than type I fibers from ICR and CBA/J mice. Following 7 days of hindlimb suspension (HS) all strains experienced significant soleus muscle and single-fiber atrophy and decreases in the absolute and specific (force/fiber CSA) of type I and II fibers. However, type I fibers from C57BL/6 mice showed no change in V��� whereas type I fibers from ICR and CBA/J showed increased V���. In conclusion, this research demonstrates that unlike the rat and human models of non-weight bearing, mouse soleus type I and II fibers are equally affected by HS with respect to decreases in fiber CSA and force. However, type I fiber V��� was elevated only in mouse strains with solei containing at least 50% type I MHC. These findings challenge the current view that non-weight bearing affects slow fibers more than fast fibers, and suggests that changes in single fiber contractile function with HS may be influenced in part by the MHC distribution of the muscle. / Graduation date: 2003
7

Control of muscle protein degradation and steady-state poly(ADP-ribose) polymerase concentration by calpain

Huang, Jing, 1961- 13 April 1998 (has links)
The first goal of this study was to understand the role of calpains in skeletal muscle protein degradation in cultured cells. We have developed a genetic approach to inhibit endogenous calpain activity through over-expressing dominant negative m-calpain (DN), antisense m-calpain (AS) and calpastatin inhibitory domain (CID). We observed that, under conditions of accelerated degradation (serum withdrawal), inhibition of m-calpain through DN-m-calpain over-expression caused a 30% inhibition of total protein degradation whereas CID over-expression reduced degradation by 63%. These constructs did not significantly affect degradation in the presence of serum. These data indicate that calpains participate in the accelerated degradation associated with serum withdrawal. Inhibition of calpain also stabilized nebulin, a major structural protein of the sarcomere. These observations indicate that calpains play significant roles in muscle protein turnover. Finally, over-expression of antisense m-calpain caused a transient reduction in m-calpain concentration after which normal m-calpain concentration was quickly re-established. These observations indicate that m-calpain is a short half-life protein in muscle cells. The second goal of this study is to investigate the role of calpain in the mediation of PARP protein level in differentiating myoblasts. Poly(ADP-ribosyl)ation, catalyzed by PARP, is involved in various physiological events, such as DNA excision repair, DNA recombination, DNA replication, cell differentiation, cell growth and transformation, and apoptosis. A protease participating in PARP turnover could be a significant regulator to the events which PARP is involved. A relationship between apoptosis and myofibrillar protein degradation via a common protease might suggest the basis for muscle wasting and atrophy which characterize in many muscle diseases. We established a genetic approach to inhibit endogenous calpain activity through over-expressing calpastatin inhibitory domain (CID). We observed that (1) inhibition of calpain activity increased PARP concentration when post-confluent myoblasts were cultured with 2% HS medium, an inducer of differentiation and (2) inhibition of calpain activity prevented PARP degradation induced by A23187 and etoposide in differentiating myoblasts. These data demonstrate that calpain is involved in regulation of PARP in cultured cells. / Graduation date: 1998
8

Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft

Gawalapu, Ravi Kumar. Root, Douglas, January 2007 (has links)
Thesis (Ph. D.)--University of North Texas, Aug., 2007. / Title from title page display. Includes bibliographical references.
9

A comparative proteomics approach to studying skeletal muscle mitochondria from myostatin knockout mice

Puddick, Jonathan. January 2006 (has links)
Thesis (M.Sc. Biological Sciences)--University of Waikato, 2006. / Title from PDF cover (viewed March 18, 2008) Includes bibliographical references (p. 98-112)
10

Molecular characterization of the amino-terminal region of the large Drosophia muscle protein projectin /

Daley, John Kevin, January 1998 (has links)
Thesis (Ph. D.)--Lehigh University, 1998. / Includes vita. Bibliography: leaves 111-118.

Page generated in 0.0665 seconds