• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hip joint forces in individuals with femoroacetabular impingement syndrome

Ismail, Karim K. 15 May 2021 (has links)
Femoroacetabular impingement syndrome (FAIS) is a disorder characterized by specific morphology of the femur and/or acetabulum, which may lead to hip pain during gait. Compared to individuals without pain, people with FAIS walk with more anterior pelvic tilt, and their pain may result from excessive anteriorly-directed hip joint forces. Previous approaches using musculoskeletal modelling to calculate joint forces, however, may inaccurately assume that each individual stands in an entirely neutral position when determining static joint angles. Consequently, information on parameters that affect joint forces (such as pelvic tilt) is lost in kinematic data used to estimate joint loading. To observe the effect of computationally altered pelvic tilt on joint forces, gait data of six healthy individuals were processed using Vicon and Visual3D. Each participant’s pelvic tilt was adjusted by ±5 degrees and ±10 degrees of tilt at all time points. Five analyses were performed per individual: no change in tilt, two posterior (positive) tilts, and two anterior (negative) tilts. The resulting data were imported into OpenSim to estimate forces from the femur onto the acetabulum in the anterior, superior, and medial directions. Data for each participant were normalized for gait cycle and body weight in MATLAB. Statistical parametric mapping software was used to determine if the differences in joint loads were significant. A more anterior pelvic tilt led to a reduction in anteriorly-directed joint forces, and an increase in the superior and medial directions. Based on these results, each individual’s pelvic tilt (obtained from their stationary kinematic data) was accounted for when modeling FAIS and healthy individuals. Using the same methods as above, the hip joint forces of 22 people with FAIS were compared to those of 22 healthy individuals as both groups walked at a prescribed speed. Although there were reductions in joint forces in both FAIS limbs compared to those of the control group, the differences were not significant, possibly due to the high variability of joint forces. Despite the significant effects of pelvic tilt on hip joint force, other underlying assumptions need to be addressed in musculoskeletal modeling software in order to compare different conditions, such as the use of the same generic model despite differences in sex and hip morphology. Future studies comparing pathological and healthy joint loads can inform researchers on gait alteration strategies and the design of assistive devices to manage the symptoms and onset of conditions such as FAIS. / 2022-05-15T00:00:00Z
2

An analysis of human gait under slippery conditions using OpenSim's musculoskeletal simulations

Phan, Phong K. 06 August 2021 (has links)
Computational simulations of gait under abnormal conditions provide insights into the actions of muscles, its relationships with external reaction forces and motions of the body during slips, trips, and falls - the leading causes of occupational injuries worldwide. OpenSimTM, an open-source motion simulation software, was utilized to construct musculoskeletal structures and create dynamic simulations of body movements. Gaits of eighteen subjects were studied to extract experimentally difficult-to-obtained variables under slippery conditions. The joint angles and moments of hip, knee, ankle and the forces of four prime muscle groups were analyzed for body corrective movements during slip events. Besides, the connections between one's perception of the surrounding environment and their postural alterations to prevent falls are also discussed. Hence, this study provides a better understanding on the joint angles, moments and muscle forces of human body, evaluates the movement deviations, and contributes to the development of predictive injury thresholds during slip events.
3

Effect of Whole-Body Kinematics on ACL Strain and Knee Joint Loads and Stresses during Single-Leg Cross Drop and Single-Leg Landing from a Jump

Sadeqi, Sara 11 July 2022 (has links)
No description available.

Page generated in 0.1014 seconds