Spelling suggestions: "subject:"myocardial motion estimation"" "subject:"nyocardial motion estimation""
1 |
Myocardial motion estimation from 2D analytical phases and preliminary study on the hypercomplex signal / Estimation du mouvement cardiaque par la phase analytique et étude préliminaire du signal hypercomplexeWang, Liang 19 December 2014 (has links)
Les signaux analytiques multidimensionnels nous permettent d'avoir des possibilités de calculer les phases et modules. Cependant, peu de travaux se trouvent sur les signaux analytiques multidimensionnels qui effectuent une extensibilité appropriée pour les applications à la fois sur du traitement des données médicales 2D et 3D. Cette thèse a pour objectif de proposer des nouvelles méthodes pour le traitement des images médicales 2D/3D pour les applications de détection d'enveloppe et d'estimation du mouvement. Premièrement, une représentation générale du signal quaternionique 2D est proposée dans le cadre de l'algèbre de Clifford et cette idée est étendue pour modéliser un signal analytique hypercomplexe 3D. La méthode proposée décrit que le signal analytique complexe 2D, est égal aux combinaisons du signal original et de ses transformées de Hilbert partielles et totale. Cette écriture est étendue au cas du signal analytique hypercomplexe 3D. Le résultat obtenu est que le signal analytique hypercomplexe de Clifford peut être calculé par la transformée de Fourier complexe classique. Basé sur ce signal analytique de Clifford 3D, une application de détection d'enveloppe en imagerie ultrasonore 3D est présentée. Les résultats montrent une amélioration du contraste de 7% par rapport aux méthodes de détection d'enveloppe 1D et 2D. Deuxièmement, cette thèse propose une approche basée sur deux phases spatiales du signal analytique 2D appliqué aux séquences cardiaques. En combinant l'information de ces phases des signaux analytiques de deux images successives, nous proposons un estimateur analytique pour les déplacements locaux 2D. Pour améliorer la précision de l'estimation du mouvement, un modèle bilinéaire local de déformation est utilisé dans un algorithme itératif. Cette méthode basée sur la phase permet au déplacement d'être estimé avec une précision inférieure au pixel et est robuste à la variation d'intensité des images dans le temps. Les résultats de sept séquences simulées d'imagerie par résonance magnétique (IRM) marquées montrent que notre méthode est plus précise comparée à des méthodes récentes utilisant la phase du signal monogène ou des méthodes classiques basées sur l'équation du flot optique. Les erreurs d'estimation de mouvement de la méthode proposée sont réduites d'environ 33% par rapport aux méthodes testées. En outre, les déplacements entre deux images sont cumulés en temps, pour obtenir la trajectoire d'un point du myocarde. En effet, des trajectoires ont été calculées sur deux patients présentant des infarctus. Les amplitudes des trajectoires des points du myocarde appartenant aux régions pathologiques sont clairement réduites par rapport à celles des régions normales. Les trajectoires des points du myocarde, estimées par notre approche basée sur la phase de signal analytique, sont donc un bon indicateur de la dynamique cardiaque locale. D'ailleurs, elles s'avèrent cohérentes à la déformation estimée du myocarde. / Different mathematical tools, such as multidimensional analytic signals, provide possibilities to calculate multidimensional phases and modules. However, little work can be found on multidimensional analytic signals that perform appropriate extensibility for the applications on both of the 2D and 3D medical data processing. In this thesis, based on the Hahn 1D complex analytic, we aim to proposed a multidimensional extension approach from the 2D to a new 3D hypercomplex analytic signal in the framework of Clifford algebra. With the complex/hypercomplex analytic signals, we propose new 2D/3D medical image processing methods for the application of ultrasound envelope detection and cardiac motion estimation. Firstly, a general representation of 2D quaternion signal is proposed in the framework of Clifford algebra and this idea is extended to generate 3D hypercomplex analytic signal. The proposed method describes that the complex/hypercomplex 2D analytic signals, together with 3D hypercomplex analytic signal, are equal to different combinations of the original signal and its partial and total Hilbert transforms, which means that the hypercomplex Clifford analytic signal can be calculated by the classical Fourier transform. Based on the proposed 3D Clifford analytic signal, an application of 3D ultrasound envelope detection is presented. The results show a contrast optimization of about 7% comparing with 1D and 2D envelope detection methods. Secondly, this thesis proposes an approach based on two spatial phases of the 2D analytic signal applied to cardiac sequences. By combining the information of these phases issued from analytic signals of two successive frames, we propose an analytical estimator for 2D local displacements. To improve the accuracy of the motion estimation, a local bilinear deformation model is used within an iterative estimation scheme. This phase-based method allows the displacement to be estimated with subpixel accuracy and is robust to image intensity variation in time. Results from seven realistic simulated tagged magnetic resonance imaging (MRI) sequences show that our method is more accurate compared with the state-of-the-art method. The motion estimation errors (end point error) of the proposed method are reduced by about 33% compared with that of the tested methods. In addition, the frame-to-frame displacements are further accumulated in time, to allow for the calculation of myocardial point trajectories. Indeed, from the estimated trajectories in time on two patients with infarcts, the shape of the trajectories of myocardial points belonging to pathological regions are clearly reduced in magnitude compared with the ones from normal regions. Myocardial point trajectories, estimated from our phase-based analytic signal approach, are therefore a good indicator of the local cardiac dynamics. Moreover, they are shown to be coherent with the estimated deformation of the myocardium.
|
Page generated in 0.1641 seconds