• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 21
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 173
  • 66
  • 37
  • 36
  • 35
  • 32
  • 30
  • 25
  • 22
  • 22
  • 17
  • 17
  • 15
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Signalling Pathways Regulating BC₃H1 Cell Myogenesis

Oakes, Janice January 1991 (has links)
The myogenic cell line, BC₃H1, upon cell-to-cell contact or serum starvation differentiates as monitored by the appearance of muscle-specific markers, actin, myosin light chain 1 (MLC 1) and tropomyosin (Tm) and morphological changes. The detection of MLC 1 and five Tm isoforms in this cell line is novel. To assess the role of protein kinase C (pk C)-and protein kinase A (pk A) signal transduction pathways in controlling BC₃H1 cell differentiation, activators of pk C (TPA) and pk A (cAMP analogues, dibutyryl-cAMP and 8-Br-cAMP) were used. TPA (500nM) addition caused no deviation from the normal expression patterns of actin, Tm and MLC 1. Addition of cAMP analogues (500μM) delayed the appearance of MLC 1 and muscle-specific isoforms of Tm, as well as α-actin while β- and γ-actin levels remained unchanged. However, α-actin mRNA levels were not affected by cAMP analogues yet the typical β- and γ-actin mRNA downregulation was blocked. cAMP appears to be operating at multiple levels to regulate BC₃H1 cell myogenesis such as post-transcriptional and translational. In addition, given the similarity in mechanisms through which cAMP and adenovirus early region 1A (AdE1A) mediate gene activation, the effect of AdE1A on BC₃H1 cell differentiation was investigated. A stable transfected AdE1A clonal cell line, BC₃E7, was characterized. Together with altered morphology, BC₃E7 cells failed to show the characteristic expression of muscle-specific markers actin, Tm and MLC 1. AdE1A transfection disrupted the synchronous expression of muscle-specific proteins during BC₃H1 cell differentiation. / Thesis / Master of Science (MS)
62

Characterization of intra-litter variation on myogenic development and myogenic progenitor cell response to growth promoting stimuli

Vaughn, Mathew Alan January 1900 (has links)
Doctor of Philosophy / Department of Animal Sciences and Industry / John M. Gonzalez / This series of studies focuses on the impact of intra-litter variation on fetal myogenesis, and the ability of porcine progenitor cells to respond to growth promoting stimuli. In study 1, the smallest (SM), median (ME), and largest (LG) male fetuses from each litter were selected for muscle morphometric analysis from gilts at d-60 ± 2 and 95 ± 2 of gestation. On d-60 and 95 of gestation LG fetuses had greater whole muscle cross-sectional area (CSA) than ME and SM fetuses, and ME fetuses had greater whole muscle CSA than SM fetuses. Indicating that SM and ME fetuses are on a delayed trajectory for myogenesis compared to LG fetuses. At d-60 the advanced trajectory of LG compared to ME fetuses was due to increased development of secondary muscle fibers; whereas, the advanced myogenic development of LG and ME fetuses compared to SM fetuses was due to the presence of fewer primary and secondary muscle fibers. At d-95 of gestation the advanced myogenic development of LG and ME was due to increased hypertrophy of secondary muscle fibers. For study 2, porcine fetal myoblasts (PFM) were isolated from SM, ME, and LG fetuses from d-60 ± 2 of gestation fetuses and for study 3, porcine satellite cells (PSC) were isolated from the piglet nearest the average body weight of the litter. Both myogenic cell types were utilized to evaluate effects of porcine plasma on proliferation, differentiation, and indications of protein synthesis. For the proliferation assay, cells were exposed to one of three treatments: high serum which consisted high-glucose Dulbecco's Modified Eagle Medium supplemented with 10% (vol/vol) fetal bovine serum, 2% (vol/vol) porcine serum, 100 U penicillan/mL, 100 µg of strepmycin/mL, and 20 µg of gentamicin/mL (HS), low serum which consisted of HS without 10% FBS (LS), and LS supplemented with 10% (wt/vol) porcine plasma (PP). Treatments for the differentiation and protein synthesis assays consisted of either HS or LS media that either contained porcine plasma at 10% (wt/vol; PPP) or 0% (wt/vol; PPN). The HS-PFM had a greater proliferation rate compared to the LS and PP-PFM, and PP-PFM had a greater proliferation rate compared to LS-PFM. The LG fetuses’ PFM had a reduced proliferation rate compared to SM and ME fetuses’ PFM, which were similar. The PPP-PFM had a decreased myotube diameter compared to PPN-PFM. Small fetuses’ PFM had a greater myotube diameter compared to ME and LG fetuses’ PFM, and ME fetuses’ PFM had a greater myotube diameter compared to LG fetuses’ PFM. The proliferation rate of PP-PSC was decreased compared to the HS- and LS-PSC, and HS-PSC had a greater proliferation rate compared to LS-PSC. The PPP-PSC had greater differentiation capacity and myotube diameter than PPN-PSC. In conjunction these results indicate divergent myogenic development among different fetal sizes within a litter and suggest that porcine plasma supplementation stimulates myogenic progenitor cell activity in an age specific manner.
63

The Role of Six1 in Transcriptional Regulation during Myogenesis

Liu, Yubing January 2017 (has links)
Skeletal myogenesis is under the control of a combinatorial network of transcription factors. It has been shown that the homeobox protein Six1 is required for embryonic myogenesis. Using functional genomics approaches, I determined that Six1 is required for myoblasts differentiation through direct binding to a cluster of genes that are related to muscle function and muscle structure during my Master’s studies. However, it was still not fully understood how Six1 selects its genomic targets and whether Six1 regulates the expression of Myod directly. I devoted my PhD work to study three central aspects of Six1 function: through what DNA motif it binds to DNA, how it regulates the expression of the myogenic regulatory factor MyoD, and how it might regulate chromatin structure at the enhancer regions of muscle genes. A more degenerate MEF3-like DNA sequence consensus has been identified from Six1 ChIP-on-chip experiments. This MEF3 motif was further optimized using bioinformatic methods and was proved to discover Six1 binding sites with improved specificity and sensitivity. Myod, a member of myogenic regulatory factors (MRFs), is a master regulator in the myogenic lineage. Multiple MEF3 sites were identified on the regulatory regions of Myod, including two MEF3 sites within its core enhancer region (CER). Six1 was able to bind to the CER directly through these two MEF3 sites and regulated the Myod expression in cultured primary myoblasts. Previous work has suggested that the CER is also bound by Myod in myoblasts. I demonstrated that the binding of Myod to the CER depended on the presence of Six1. Six1 was also involved in maintaining a relatively ‘open’ chromatin structure at the CER, suggesting that Six1 may play a direct or indirect role in chromatin remodeling. During my Master’s studies, I demonstrated a synergistic regulation by the Six and MRF families. This synergistic function gains potential importance by the fact that ~25% of Six1 genomic targets are also bound by Myod. I decided to study whether the co-occupancy of Six1 and Myod was essential to maintain the proper global chromatin structure at these loci. Six1 and Myod co-bound genomic regions correlated with more accessible chromatin, which was detected by the formaldehyde-assisted isolation of regulatory elements (FAIRE) assay followed by DNA deep sequencing (FAIRE-seq). When combined with small interfering RNA-mediated gene knockdown of Six1 or Myod, FAIRE-seq data suggested that Six1, but not Myod, was involved in regulating the chromatin accessibility at these co-bound DNA loci. To shed light on the mechanism by which Six1 functions, proteomics approaches were used and revealed that proteins involved in “regulation of transcription” and “chromatin organization” were enriched among Six1-bound proteins. Cdk9 and its partner cyclin T have been shown to stimulate gene expression by releasing RNA polymerase II from transcriptional pause, but they can also function at gene enhancers. I determined that Six1 and Cdk9 participated in the same protein complex, and that the Cdk9 activity appeared to mediate the effect of Six1 on the chromatin accessibility at the CER to regulate the Myod expression. Taken together, these results demonstrate that Six1 regulates the expression of Myod through its direct binding on the CER which facilitates transcriptional elongation.
64

Biomechanical forces upregulate myogenic gene induction in the presence or absence of inflammation a possible role of IGFR1-PI3K-AKT pathway /

Chandran, Ravi, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 109-118).
65

The role of the homeodomain transcription factor Pitx2 in regulating skeletal muscle precursor migration and higher order muscle assembly

Campbell, Adam L. 31 May 2012 (has links)
Cells of the ventrolateral dermomyotome delaminate and migrate into the limb buds where they give rise to all muscles of the limbs. The migratory cells proliferate and form myoblasts, which withdraw from the cell cycle to become terminally differentiated myocytes. The regulatory mechanisms that control the later steps of this myogenic program are not well understood. The homeodomain transcription factor Pitx2 is expressed specifically in the muscle lineage from the migration of precursors to adult muscle. Ablation of Pitx2 results in distortion, rather than loss, of limb muscle anlagen, suggesting that its function becomes critical during the colonization of, and/or fiber assembly in, the anlagen. Microarrays were used to identify changes in gene expression in flow-sorted migratory muscle precursors from Wild type and Pitx2 null mice. Changes in gene expression were observed in genes encoding cytoskeletal, adhesion and fusion proteins which play a role in cell motility and myoblast fusion. We observed decreased cellular motility, disrupted cytoskeleton organization and focal adhesion distribution, decreased fusion of mononucleated myoblasts into multinucleated myotubes and decreased proliferation in presence of Ptix2. These studies suggest that Pitx2 plays a critical role in regulating the timing of myoblast filling the limb anlagen which may have detrimental consequences for higher order muscle architecture. / Graduation date: 2013
66

Identification of genes regulated by the Drosophila transcription factor Hindsight

Du, Olivia Yang January 2013 (has links)
Hindsight (HNT) is a zinc finger transcription factor that is required for morphogenesis of the Drosophila embryo, having roles in germ band retraction (GBR) as well as dorsal closure (DC). HNT expression is also found in sensory organ precursors (SOP) of the developing pupal peripheral nervous system, and muscle progenitor cells, but the role of HNT in neurogenesis and myogenesis during embryogenesis has not been investigated in any depth. Microarray analysis of embryos over-expressing HNT during GBR and DC identified 1290 genes with significant changes in expression. This data set included many potential HNT targets, including genes associated with myogensis, and a disruption of muscle development was observed in embryos over-expressing HNT. It is possible that HNT may function to repress muscle identity genes in muscle founder cells. In addition, HNT over expressing embryos were found to resemble the neurogenic class of mutants. Among the potential target genes, D-Pax2 (shaven, sparkling, CG11049) expression, which is known to be expressed in the developing peripheral nervous system, was confirmed to be up-regulated following HNT over-expression. Interestingly, D-Pax2 and HNT expression were found to co-localize at the onset of their expression at stages 10-12 in embryos, but were not co-localized in later stages of embryogenesis. The up-regulation of D-Pax2 by HNT over-expression was further characterized and was found to be associated with strong ectopic HNT expression. The relevance of HNT to the regulation of D-Pax2 during normal development remains to be determined, but it is possible that endogenous expression of HNT is involved in D-Pax2 repression.
67

Regulation of Skeletal Muscle Formation and Regeneration by the Cellular Inhibitor of Apoptosis 1 (cIAP1) Protein

Enwere, Emeka K. 01 June 2011 (has links)
The inhibitor of apoptosis (IAP) proteins traditionally regulate programmed cell death by binding to and inhibiting caspases. Recent studies have uncovered a variety of alternate cellular roles for several IAP family members. The cellular inhibitor of apoptosis 1 (cIAP1) protein, for instance, regulates different axes of the NF-κB signalling pathway. Given the extensive functions of NF-κB signalling in muscle differentiation and regeneration, I asked if cIAP1 also plays critical roles in skeletal muscle myogenesis. In a primary myoblast cell-culture system, genetic and pharmacological approaches revealed that loss of cIAP1 dramatically increases the fusion of myoblasts into myotubes. NF-κB signalling occurs along a classical and an alternative pathway, both of which are highly active in cIAP1-/- myoblasts. Suppression of the alternative pathway attenuates myotube fusion in wildtype and cIAP1-/- myoblasts. Conversely, constitutive activation of the alternative pathway increases myoblast fusion in wildtype myoblasts. cIAP1-/- mice have greater muscle weight and size than wildtypes, as well as an increased number of muscle stem cells. These results identify cIAP1 as a regulator of myogenesis through its modulation of classical and alternative NF-κB signalling pathways. Loss of the structural protein dystrophin in the mdx mouse model of Duchenne muscular dystrophy leads to chronic degeneration of skeletal muscle. The muscle pathology is strongly influenced by NF-κB signaling. Given the roles demonstrated for cIAP1 in cell culture and in vivo, I asked whether loss of cIAP1 would influence muscle pathology in the mdx mouse. To address this question, double-mutant mice were bred lacking both cIAP1 and dystrophin (cIAP1-/-;mdx). Histological analyses revealed that double-mutant mice exhibited reduced indications of damage on several measures, as compared to single-mutant (cIAP1+/+;mdx) controls. Unexpectedly, these reductions were seen in the “slow-twitch” soleus muscle but not in the “fast-twitch” extensor digitorum longus (EDL) muscle. The improvements in pathology of double-mutant solei were associated with reductions in muscle infiltration by CD68-expressing macrophages. Finally, the double-mutant mice exhibited improved endurance and resistance to damage during treadmill-running exercise. Taken together, these results suggest that loss of cIAP1, through its multiple regulatory functions, acts to improve myogenesis and increase muscle resistance to damage.
68

Regulation of Skeletal Muscle Formation and Regeneration by the Cellular Inhibitor of Apoptosis 1 (cIAP1) Protein

Enwere, Emeka K. 01 June 2011 (has links)
The inhibitor of apoptosis (IAP) proteins traditionally regulate programmed cell death by binding to and inhibiting caspases. Recent studies have uncovered a variety of alternate cellular roles for several IAP family members. The cellular inhibitor of apoptosis 1 (cIAP1) protein, for instance, regulates different axes of the NF-κB signalling pathway. Given the extensive functions of NF-κB signalling in muscle differentiation and regeneration, I asked if cIAP1 also plays critical roles in skeletal muscle myogenesis. In a primary myoblast cell-culture system, genetic and pharmacological approaches revealed that loss of cIAP1 dramatically increases the fusion of myoblasts into myotubes. NF-κB signalling occurs along a classical and an alternative pathway, both of which are highly active in cIAP1-/- myoblasts. Suppression of the alternative pathway attenuates myotube fusion in wildtype and cIAP1-/- myoblasts. Conversely, constitutive activation of the alternative pathway increases myoblast fusion in wildtype myoblasts. cIAP1-/- mice have greater muscle weight and size than wildtypes, as well as an increased number of muscle stem cells. These results identify cIAP1 as a regulator of myogenesis through its modulation of classical and alternative NF-κB signalling pathways. Loss of the structural protein dystrophin in the mdx mouse model of Duchenne muscular dystrophy leads to chronic degeneration of skeletal muscle. The muscle pathology is strongly influenced by NF-κB signaling. Given the roles demonstrated for cIAP1 in cell culture and in vivo, I asked whether loss of cIAP1 would influence muscle pathology in the mdx mouse. To address this question, double-mutant mice were bred lacking both cIAP1 and dystrophin (cIAP1-/-;mdx). Histological analyses revealed that double-mutant mice exhibited reduced indications of damage on several measures, as compared to single-mutant (cIAP1+/+;mdx) controls. Unexpectedly, these reductions were seen in the “slow-twitch” soleus muscle but not in the “fast-twitch” extensor digitorum longus (EDL) muscle. The improvements in pathology of double-mutant solei were associated with reductions in muscle infiltration by CD68-expressing macrophages. Finally, the double-mutant mice exhibited improved endurance and resistance to damage during treadmill-running exercise. Taken together, these results suggest that loss of cIAP1, through its multiple regulatory functions, acts to improve myogenesis and increase muscle resistance to damage.
69

Post-translational regulation of myocyte enhancer factor 2 (MEF2) /

Du, Min. January 2008 (has links)
Thesis (Ph.D.)--York University, 2008. Graduate Programme in Biology. / Typescript. Includes bibliographical references (leaves 182-202). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR39002
70

Gene expression during skeletal muscle development affect of in ovo IGF-1 administration on broiler embryogenesis and postnatal myogenesis in the mouse /

Richter, Jennifer Jo. January 2002 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xii, 118 p. : ill. (some col.). Includes abstract. Includes bibliographical references.

Page generated in 0.0786 seconds