• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 22
  • 12
  • 4
  • 2
  • 1
  • Tagged with
  • 130
  • 51
  • 51
  • 49
  • 49
  • 46
  • 46
  • 46
  • 39
  • 39
  • 34
  • 29
  • 27
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Vestibular Evoked Myogenic Potentials

Akin, Faith W., Murnane, Owen D. 01 January 2008 (has links)
Book Summary: This book comprehensively covers the assessment and treatment of balance system impairments. Designed to be used in graduate programs in audiology, and by practicing audiologists, it is also appropriate for those in the fields of physical therapy, otolaryngology, and neurology. Assessment chapters address ocular motility testing, positional/positioning testing, caloric testing, rotational testing, computerized dynamic posturography, and vestibular evoked potentials. Treatment chapters cover non-medical, medical, and surgical treatment of dizziness and vertigo, vestibular rehabilitation and assessment of and intervention for falls risk. Additionally, the book provides background information on the vestibular and ocular motor systems, sample cases, and a final chapter, "Putting It All Together."
72

The Effects of Stimulus and Recording Parameters on Vestibular Evoked Myogenic Potentials

Akin, Faith W., Murnane, Owen D., Tampas, J., Prieve, C., Wilson, R. H. 01 January 2005 (has links)
No description available.
73

Vestibular Evoked Myogenic Potentials: Recording Methods

Murnane, Owen D., Akin, Faith W. 01 January 2002 (has links)
No description available.
74

Vestibular Evoked Myogenic Potentials

Akin, Faith W., Murnane, Owen D. 01 January 2000 (has links)
No description available.
75

Vestibular Evoked Myogenic Potentials

Akin, Faith W., Murnane, Owen D. 01 January 2006 (has links)
No description available.
76

The Clinical Application of the Vestibular Evoked Myogenic Potentials

Akin, Faith W., Murnane, Owen D. 01 January 2005 (has links)
No description available.
77

The tumor vasculature : functional reactivity and therapeutic implications

Sonveaux, Pierre 16 January 2004 (has links)
In the past decades, tumors have progressively been perceived as highly integrated systems in which the genetically unstable tumor cells and the genetically stable host cells cooperate to promote tumor growth. This view suggests that, beside tumor cells (that are targeted by conventional anticancer treatments such as radio- and chemotherapy), host cells within the tumor microenvironment can be targeted by antitumor therapy. Such alternative strategies are strongly supported by the need to overcome several limitations of the conventional therapies targeting tumor cells, such as collateral toxicity due to lack of tumor selectivity, limited tumor accessibility, and the selection of treatment-resistant variants. By contrast to tumor cells, the genetically stable host cells should not develop resistance to treatments. In this context, the observation that tumor growth is fundamentally dependent on the onset of a private tumor neovasculature (tumor angiogenesis) has revolutionized the field of cancer research. Several treatments have been developed aimed to prevent tumor angiogenesis (anti-angiogenic strategies) or to erase the existent tumor vasculature (anti-vascular approaches) supporting the survival and growth of thousands of tumor cells. However, although such therapies achieved cancer cure in animal models, they turned out to be rather inefficient when tested in patients. This can be attributed to differences in the angiogenic status between fast-growing animal tumors and slow-growing human tumors at the time of clinical detection. Another reading of the above-mentioned observations is that anticancer treatments could benefit from interventions aimed at increasing their efficiency. For instance, radiotherapy could benefit from tumor reoxygenation while a decrease in tumor interstitial pressure could facilitate tumor accessibility to circulating agents. In this context, the mature vasculature is an attractive target since it controls tumor blood supply and is highly accessible for therapy. Therefore, strategies aimed at exploiting its functional reactivity by inducing vasorelaxation have the potential to improve tumor perfusion/drug delivery and oxygenation/radiosensitivity. To be exploited in the clinics, such pro-vascular approaches have to fulfill essential requirements. First, they need to achieve high selectivity for tumor vessels. It should prevent systemic toxicity as well as the stealing of the blood flow towards the peripheral vasculature. Second, vasodilation has to be transient, so that the tumor should not take advantage of an increased energetic supply to grow faster. Third, the therapeutic effects have to be achieved in several tumor types and in different host strains to gain a wide therapeutic range of applicability. Finally, vasomodulation has to be achieved with interventions relevant to the clinical situation, ensuring direct therapeutic significance. However, the therapeutic exploitation of agents modulating tumor perfusion was generally hampered by confounding effects on the systemic blood pressure. In our studies, we have documented that this lack of tumor selectivity can be overcome by identifying vasomodulatory pathways that are selectively altered within the tumor microenvironment, allowing selective vasomodulatory interventions. According to the criteria detailed above, to identify a differential tumor vascular reactivity, we had to work with mice models of mature tumor vascularization. We reasoned that preexisting host arterioles in mice, if coopted, should retain architectural characteristics (such as a muscular coat) necessary for functional reactivity but also be influenced by the tumor microenvironment at both molecular and functional levels. To gain in reproducibility, this model was developed by injecting syngeneic tumor cells in the vicinity of the saphenous arteriole (i.e., a collateral branch of the femoral artery) in the rear leg of mice. With tumor growth, this arteriole was progressively included in the tumor cortex (coopted), with side branches running deeply into tumors. This model was developed using several tumors and mice strains. It provides the unique advantage to allow the easy identification and isolation of mature tumor vessels from fast-growing animal tumors. To evaluate differential vasoreactivity in those tumor-coopted vessels, we adapted pressure myography, a device initially dedicated to the study of the reactivity of coronary arterioles (see annex 1). In our hands, the unprecedented application of pressure myography to the study of small tumor vessels proved to be very efficient. Indeed, this technique not only served us to confirm that arterioles remain sensitive to vasomodulation under tumor cooption, but also allowed us to evidence two major adaptations of host vessels to the tumor microenvironment: the acquisition of an ET-1-mediated basal constrictive tone and a defect in the vasodilatory NO pathway. Furthermore, we used pressure myography to identify and characterize vasomodulatory strategies exploiting these differential reactivities. More particularly, we showed that both BQ123 (an ETA inhibitor) and ionizing radiations (that restored a functional NO pathway) promoted the vasodilation of the tumor-coopted vessels. In vivo, we verified that these strategies fulfilled the essential requirements of pro-vascular approaches: tumor selectivity, transient effects, broad range of applicability, and therapeutic significance in clinically relevant regimens. This latter study led us to further explore the effects of radiotherapy on the status of the tumor vasculature. Hence, we showed that fractionated radiotherapy induced tumor angiogenesis, thereby providing a rationale to combine radiotherapy to anti-angiogenic therapies.
78

Analysis of myogenic regulatory factors and insulin-like growth factors in early somite myogenesis /

Kiefer, Julie Christine. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 96-116).
79

Resveratrol as a Novel Therapeutic Agent for Treating Duchenne Muscular Dystrophy

Burt, Matthew 28 October 2013 (has links)
Duchenne Muscular Dystrophy (DMD) is an x-linked neuromuscular disease that is caused by an absence of dystrophin protein, rendering skeletal muscle more susceptible to contraction-induced damage. One therapeutic strategy focuses on increasing the expression of endogenous utrophin A, a dystrophin homologue. Interestingly, slow muscle is more resistant to the dystrophic pathology and has increased utrophin A expression (Webster 1998; Gramolini 2001b). These observations led researchers to explore the therapeutic potential of stimulating the slow, oxidative myogenic program (SOMP) in the mdx context. Beneficial adaptations were seen with pharmacological activation of PPARδ and AMPK. We treated mdx mice with resveratrol (~100mg/kg/day), a putative SIRT1 activator, for 6-7 weeks and evaluated the activity of phenotypic modifiers that are known to influence the SOMP. SIRT1 activity and protein levels increased significantly, as well as downstream PGC-1α activity. There was evidence of a fibre type conversion as the treated mice had a higher proportion of the slow myosin heavy chain isoforms in both the EDL and Soleus skeletal muscles. Utrophin A protein levels showed modest, but consistent increases with resveratrol treatment. Finally, histological analysis revealed improvements in central nucleation and fibre size variability. These findings were promising, but raised the question of whether modifying the treatment regimen may result in greater therapeutic benefits. Surprisingly, we discovered that an elevated dose of 500mg/kg/day was ineffective in its promotion of the SOMP. SIRT1 was not activated and there was no change in utrophin A levels with resveratrol treatment. Taken together, this study demonstrates that resveratrol has the ability to promote the SOMP through SIRT1 and PGC-1α activation. It also highlights the importance of selecting an appropriate dose of resveratrol to maximize its effectiveness.
80

Myogenic BHLH transcription factors : their overlapping functions and direct regulation of MEF2C provide a regulatory network for the maintenance and amplification of vertebrate myogenesis

Valdez, Melissa Renee. January 2001 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2001. / Vita. Bibliography: 108-125.

Page generated in 0.0289 seconds