• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 12
  • 6
  • 6
  • 2
  • 2
  • Tagged with
  • 56
  • 56
  • 17
  • 14
  • 14
  • 13
  • 12
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification, isolation and characterisation of the Drosophila othologue of human SIX5

Hamilton, Graham January 2002 (has links)
No description available.
2

Structure-Stabilizing RNA Modifications Prevent MBNL Binding to Toxic CUG and CCUG Repeat RNA in Myotonic Dystrophy

Delorimier, Elaine 18 August 2015 (has links)
Myotonic dystrophy is a genetic neurodegenerative disease caused by repeat expansion mutations. Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the 3’ UTR of the dystrophia myotonia protein kinase (DMPK) gene, while myotonic dystrophy type 2 (DM2) is caused by a CCTG repeat expansion in intron 1 of the zinc finger protein nine (Znf9) gene. When expressed, these genes produce long CUG/CCUG repeat RNAs that bind and sequester a family of RNA-binding proteins known as muscleblind-like 1, 2 and 3 (MBNL1, MBNL2, MBNL3). Sequestration of these proteins plays a prominent role in pathogenicity in myotonic dystrophy. MBNL proteins regulate alternative splicing, and myotonic dystrophy symptoms are a result of mis-spliced transcripts that MBNL proteins regulate. MBNL proteins bind to a consensus sequence YGCY (Y = pyrimidine), which is found in CUG and CCUG repeats, and cellular RNA substrates that MBNL proteins bind and regulate. CUG and CCUG repeats can form A-form helices, however it is hypothesized that MBNL proteins bind to the helices when they are open and the YGCY binding site is single-stranded in nature. To evaluate this hypothesis, we used structure-stabilizing RNA modifications pseudouridine (Ψ) and 2’-O-methylation to determine if stabilization of CUG and CCUG repeat helices affected MBNL1 binding and toxicity. We also used Ψ to determine if the structure-stabilizing modification affected MBNL binding to single-stranded YGCY RNA. CUG repeats modified with Ψ or 2’-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Ψ also stabilized the structure of CCUG repeats and rigidified single-stranded YGCY RNA and inhibited MBNL1 binding to both of these RNAs. Binding data from CCUG repeats and single-stranded YGCY RNA suggest that both pyrimidines in the YGCY motif must be modified for significant inhibition. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Molecular dynamics simulations suggest that Ψ increases base-stacking interactions, and reducing the flexibility of single-stranded RNA leads to reduced MBNL1 binding. Ψ modification rescued mis-splicing in a cellular DM1 model and prevented CUG repeat toxicity in zebrafish embryos. This dissertation includes previously published and unpublished coauthored material.
3

Na channel gating : lessons learned from mytonic dystrophy /

Miller, James Richard. January 1999 (has links)
Thesis (Ph. D.)--University of Virginia, 1999. / Includes bibliographical references (p. 104-113). Also available online through Digital Dissertations.
4

Skeletal muscle adaptations to chronic exercise in a pre-clinical model of myotonic dystrophy type 1

Manta, Alexander January 2018 (has links)
Myotonic dystrophy type 1 (DM1) is the second most common muscular dystrophy and most prevalent adult form. A microsatellite expansion comprised of CTG repetitions in the dystrophia myotonica protein kinase (DMPK) gene, DM1 is characterized by muscle weakness, wasting, and myotonia. The expanded nucleotide sequence of the DMPK mRNA results in the misregulation of important RNA-binding proteins (RNABPs), Muscleblind-like 1 (MBNL1) in particular. MBNL1 becomes trapped in myonuclei within the repeating CUG transcript, which reduces the RNABPs ability to process newly synthesized mRNAs that are important for the maintenance of healthy muscle function. Recent studies with DM1 participants demonstrate that exercise is safe, enjoyable, and elicits benefits in muscle strength and function. However, the molecular mechanisms of exercise adaptation in DM1 are largely unknown. Understanding the cellular processes that drive exercise-induced remodelling may assist in the discovery of effective lifestyle interventions to mitigate DM1. In this thesis, three groups of mice were utilized: i) sedentary DM1 animals (SED-DM1), ii) DM1 mice who volitionally exercised daily on a home cage running wheel (EX-DM1), and iii) sedentary healthy, wild-type mice (WT). EX-DM1 animals ran 5.6 km/day during the 7-week experimental time course, a volume of volitional physical activity that is lower than that observed in WT animals. Post-exercise functional tests demonstrated that chronic exercise significantly improved motor performance, muscle strength and endurance. Electromyography revealed that chronic exercise mitigated myotonia. At the cellular and molecular levels, we found that chronic physical activity attenuated RNA toxicity, liberated MBNL1 from myonuclear sequestration, and selectively normalized the spliceopathy of bridging integrator 1 and muscle-specific chloride channel mRNAs. Collectively, our data indicate that chronic exercise improves DM1 at the molecular, cellular and physiological levels. / Thesis / Master of Science (MSc) / Myotonic dystrophy type 1 (DM1) is the second most common muscular dystrophy and most prevalent adult form. Muscle weakness, wasting, and myotonia most prominently characterize DM1. A microsatellite repeat expansion mutation in the dystrophia myotonica protein kinase gene, which results in RNA toxicity and dysregulation of mRNA processing, are the root causes of the disorder. Recent studies with DM1 participants demonstrate that exercise is safe, enjoyable, and elicits benefits in muscle strength and function. However, the molecular mechanisms of exercise adaptation in DM1 are largely unknown. Understanding the cellular processes that drive exercise-induced remodelling may assist in the discovery of effective lifestyle interventions to mitigate DM1. In this thesis, three groups of mice were utilized: i) sedentary DM1 animals (SED-DM1), ii) DM1 mice who volitionally exercised daily on a home cage running wheel for 7 weeks (EX-DM1), and iii) sedentary healthy, wild-type mice (WT). Post-exercise functional tests demonstrated that chronic exercise significantly improved motor performance, muscle strength and endurance, as well as reduced myotonia. At the cellular level, we found that chronic physical activity attenuated RNA toxicity and improved mRNA processing. Our data indicate that physical activity improves DM1 at the molecular and physiological levels and lays the foundation for future work to optimize the exercise prescription.
5

Molecular pathology detection strategies for three autosomal dominant neurodegenerative diseases

Elshafey, Alaa E. January 1996 (has links)
No description available.
6

Expression and functional analysis of the transcription factor DMAHP

Harris, Sarah Elizabeth January 1999 (has links)
No description available.
7

Cloning and characterisation of a novel DMPK-related gene : CDC42BPB

Moncrieff, Colin Lindsay January 1999 (has links)
No description available.
8

Developmental timing and the role of cis and trans acting modifiers on CTG repeat instability in murine models

Fortune, Maria Teresa January 2001 (has links)
No description available.
9

Mécanismes moléculaires associés aux changements d'épissage de Tau dans une Tauopathie, la dystrophie myotonique de type 1 / Molecular mechanisms related to Tau missplicing in a Tauopathy, myotonic dystrophy type 1

Tran-Ladam, Hélène 17 December 2010 (has links)
La pathologie Tau est une lésion neuronale commune à plus d’une vingtaine de maladies neurodégénératives. Elle correspond à l’agrégation des protéines Tau anormalement modifiées. Les mécanismes moléculaires impliqués dans l’agrégation de Tau demeurent encore mal compris. Toutefois, parmi les différentes hypothèses étiologiques, celle d’une dérégulation de l’épissage alternatif de Tau nous intéresse tout particulièrement. Ici, nous considérons la dystrophie myotonique de type 1 (DM1) comme maladie « modèle » pour étudier cette relation, puisqu’elle présente à la fois une dérégulation de l’épissage alternatif de Tau et des agrégats Tau. La DM1 est la forme adulte la plus fréquente de dystrophie musculaire. Il s’agit d’une maladie héréditaire à transmission autosomale dominante caractérisée par des répétitions CTGn>50 instables localisées dans la région 3’UTR du gène DMPK. Les mécanismes impliqués supposent un gain de fonction toxique des ARN mutés conduisant à une modification de l’épissage alternatif de nombreux transcrits parmi lesquels Tau. Dans ce contexte, nos objectifs étaient 1) de caractériser le défaut d’épissage de Tau dans le cerveau de plusieurs cas DM1 2) de modéliser ce défaut d’épissage afin d'identifier les facteurs trans-régulateurs impliqués et 3) de proposer une approche visant à restaurer un épissage normal. Le défaut d’épissage de Tau a été observé dans tous les cas analysés. Celui de l’exon 10, en revanche, n’a été rapporté que chez deux cas, qui, de façon intéressante, présentaient également une augmentation de l’expression des protéines CELF, décrites comme protéines régulatrices de l’épissage de Tau. Outre les protéines CELF, nous nous sommes également intéressés à MBNL1. MBNL1 est un facteur d’épissage jouant un rôle essentiel dans la physiopathologie de la DM1 où il a été décrit comme séquestré dans les foci. Peu de choses sont connues sur MBNL1 dans le cerveau et sur son rôle sur l’épissage alternatif des transcrits neuronaux. Ici, nous montrons que le niveau d’expression cérébrale de MBNL1 ne varie pas entre les cas DM1 et contrôles. En revanche, nous montrons que son épissage alternatif est dérégulé dans le cerveau. Notre étude de relation entre la structure et la fonction de la protéine suggère que ce changement d’épissage favorise sa séquestration dans les foci en modifiant sa localisation nucléaire, son activité de facteur d’épissage et ses propriétés d’oligomérisation. Le changement d’épissage de MBNL1 n’influence pas celui de Tau. Cependant, sa perte de fonction reproduit un profil d’épissage similaire à celui observé dans les cerveaux DM1. De plus, nous montrons que la surexpression de MBNL1, en présence des répétitions CTG suffit à restaurer un épissage normal de Tau et de plusieurs autres transcrits dérégulés dans la DM1. Enfin, des expériences complémentaires réalisées avec des protéines tronquées non fonctionnelles en tant que facteur d’épissage suggèrent que la restauration d’un profil d’épissage normal dans la DM1 serait due à la saturation des sites de liaisons CUG, ce qui permettrait de libérer les protéines MBNL1 séquestrées. Ces constructions semblent donc présenter un potentiel intérêt pour inverser les changements d’épissage observés dans la DM1 et sont actuellement en cours d’études. / Tau pathology is a brain lesion common to more than twenty neurodegenerative disorders. It consists of the abnormal aggregation of the microtubule-associated protein Tau into neurofibrillary tangles. Mechanisms underlying Tau aggregation are not fully understood yet. However, among the different etiological hypothesises, the one of a relationship between Tau mis-splicing and Tau aggregates particularly interests us. Here, we proposed a disease model, being myotonic dystrophy type I (DMI), in which Tau mis-splicing and Tau aggregate occur. DM1 is the most common adult form of muscular dystrophy. It is an inherited autosomal disorder characterised by a dynamic instable CTG repeats (over 50) in the 3’UTR of DMPK gene. DM1 pathogenesis is suggested to result from a RNA toxic gain of function whereby mutant transcripts modify the splicing machinery activity leading thus to a mis-splicing of several pre-mRNA targets including Tau. In this context, our objectives were to 1) characterize Tau mis-splicing in several DM1 brain patients 2) Model it and identify the trans-regulating splicing factors likely involved and 3) Propose a therapeutic approach to reverse it. Tau mis-splicing was always observed for both exons 2 and 3 in human adult DM1 brain and consisted of a reduced inclusion. Tau exon 10 splicing was seldom mis-regulated and associated with an increase of the CELF proteins family. CELF proteins are splicing factors previously described to regulate alternative splicing of Tau exons 2, 3 and 10. In addition to the CELF proteins, we also investigated the potential role of the splicing factor MBNL1, which was shown to play an essential role in DM1 physiopathology through its sequestration by the CUG repeats. MBNL1’s brain expression was ill-defined. Here, we report that MBNL1’s expression level was not altered but its splicing modified in adult DM1 brain. In addition, we provide evidences by a relationship study between the structure and the function of MBNL1 that this mis-splicing event favored its sequestration to the foci by modifying its cell-localization, splicing activity and oligomerization properties. MBNL1 mis-splicing does not influence Tau mis-splicing. However its loss of expression reproduced the mis-splicing of Tau exons 2/3 as observed in DM1 brain. Interestingly, the overexpression of MBNL1 in the presence of the CTG repeats partially restored a normal splicing of Tau as well as several other mis-regulated pre-mRNA targets. Further experiments performed with different molecular constructs lead us to hypothezied that the reversal of the abnormal splicing events observed in DM1 was mediated by a saturation of the CUG binding sites that lead to the release of a free pool of MBNL1, recovering thus its splicing function. This work leads us to design a new molecular tool that might be of interest to reverse the pathological events observed in DM1.
10

Atrial Flutter and Myotonic Dystrophy in a Male Adolescent Treated With Radiofrequency Catheter Ablation

Halawa, Ahmad, Iskandar, Said B., Brahmbhatt, Vipul, Fahrig, Stephen A. 01 March 2007 (has links)
A variety of cardiomyopathies are due to familial disease. Most are primarily associated with cardiac involvement and can lead to hypertrophic, dilated, or restrictive cardiomyopathy. Myotonic dystrophy (MD) is a multisystem disease with autosomal dominant inheritance and variable penetrance. Cardiac diseases are important causes of morbidity and mortality in MD patients. Patients with primary MD should be carefully investigated with an electrocardiogram, stress test, and an echocardiogram to identify preclinical cardiac involvement and to prevent life-threatening complications. Any new onset of atrial flutter or atrial fibrillation in a young patient without any underlying cardiac abnormality should be investigated for underlying myopathy. The authors report on a male adolescent with MD who presented with atrial flutter. The patient had been diagnosed with MD at birth. He had an impaired ejection fraction of 38% to 45%. The patient described sharp chest pain in the retrosternal area, with no radiation, that was induced by exercise.

Page generated in 0.074 seconds