• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of oceanographic conditions and culture methods on the dynamics of mussel farming in Saldanha Bay, South Africa

Heasman, Kevin Gerald January 1996 (has links)
The principal aim of this study was to establish the biological and environmental parameters governing the successful and sustainable cultivation of mussels in Saldanha Bay. The environmental study investigated seston, chlorophyll-a and particulate organic matter (POM) levels, water temperature dissolved oxygen and salinity levels in the bay and water flow in and around the rafts. The biological part of the study investigated the efficiency of food extraction, growth rates, mussel condition, fouling and production and yield on a rope, raft and farm scale. Saldanha Bay is well suited for the culture of mussels, particularly Mytilus galloprovincialis and Choromytilus meridionalis. Water temperature and salinity in Saldanha Bay were found to be near optimal for mussel culture. POM and chlorophyll-a levels were found to be high due to primary production resulting from the nutrient rich upwelled water outside Saldanha Bay. The mean levels of chlorophyll-a (8,6μg/l) represent 6%, by mass, of the total POM. On a bay scale the POM remained above the mussels maximum requirements (pseudofaeces threshold) during the study period. Mussels showed a preference for the phytoplankton portion of the POM. Approximately 40% of the chlorophyll-a was extracted from the water by the mussel farm. The efficiency of food extraction increased with mussel age. Rafts with seed mussels younger than 2 months, 3 to 4 months, 5 to 6 months and older than 6 months extracted 32%, 55%, 85% and 92% of the available chlorophyll-a respectively. An increase of rope spacing on the rafts resulted in 37% more chlorophyll-a and 30% more particle volume reaching the lee of the raft. Ambient water currents in the bay show flow rates of up to 22cm per second. However, on entering a raft with a rope spacing of 60cm, the water flow is attenuated by 90%. Increasing the rope spacing to 90cm resulted in a water flow attenuation of 72%. The increase in rope spacing ensures that the mussels in the centre of the raft are feeding on food levels close to, or above, the pseudofaeces level. Mussel growth rate at a rope spacing of 90cm is significantly improved as a result of the increased food delivery. There are other factors, however that effect mussel growth. Growth rates were found to be better in summer than in winter. The reduced winter growth rate is possibly due to competition with the maturing fouling organisms which settle in mid to late summer. Fouling by mussel spat and Ciona intestinalis is seasonal, occurring from December to May. C.intestinalis is prevalent in the centre of the farm and rafts as low energy waters are preferred by this species. Mussel spat settles mainly on the periphery of the farm and the rafts. Competition with fouling organisms reduces growth and increases mortality of the cultured mussels. Results indicate that the present spacing of rafts, (1 raft per hectare) is adequate under existing conditions. Any new farms should maintain batches of 50 rafts with channels between them to ensure water current penetration into the furthest reaches of the farm. Rope spacing on the rafts should be increased to between 60cm and 90cm. Mussel density should be regulated according to mussel size and fouling should be controlled to maintain yields.
2

A genetic and ecophysiological comparison of co-occuring indigenous (Perna perna) and invasive (Mytilus galloprovincialis) intertidal mussels

Zardi, G I January 2006 (has links)
The Mediterranean mussel Mytilus galloprovincialis is the most successful marine invasive species in South Africa. Its presence has had significant ecological consequences on the intertidal communities of the west coast. On the south coast, M galloprovincialis co-exists and competes with the indigenous intertidal mussel Perna perna in the lower balanoid zone, where they show partial habitat segregation. The upper and the lower mussel zones are dominated by M. galloprovincialis and P. perna respectively while they co-occur in the mid zone. In this thesis M. galloprovincialis and P. perna are compared in terms of their population genetics and their ecophysiology. The success of an invader depends on its ability to react to new environmental factors, especially when compared to indigenous species. The distribution and diversity of intertidal species throughout the world are strongly influenced by periodic sand inundation and hydrodynamic stress. Occupying the lower intertidal zone, P. perna is more strongly influenced by sand (burial and sand in suspension) than M. galioprovincialis. Despite this, P. perna is more vulnerable to the effects of sand, showing higher mortality rates under experimental conditions in both the laboratory and the field. M. galioprovincialis has longer labial palps than P. perna, indicating a better ability to sort particles. This, and a higher tolerance to anoxia, explains its lower mortality rates when exposed to burial or suspended sand. Habitat segregation is often explained by physiological tolerances, but in this case, such explanations fail. The ability of a mussel to withstand wave-generated hydrodynamic stress depends mainly on its byssal attachment strength. The higher attachment strength of P. perna compared to M. galioprovincialis and of solitary mussels compared to mussels living within a bed (bed mussels) can be explained by more and thicker byssal threads. M galloprovincialis also has a wider shell, is subjected to higher hydrodynamic loads than P. perna and shows a higher theoretical probability of dislodgement, this is borne out under field conditions. The attachment strength of both species increased from higher to lower shore, in parallel to a gradient of a stronger wave action. Monthly measurements showed that P. perna is always more strongly attached than M. galloprovincialis and revealed seasonal fluctuations of attachment strength for both species in response to wave height. The gonad index of both species was negatively cross-correlated with attachment strength. The results are discussed in the context of the evolutionary strategy of the alien mussel, which directs most of its energy to fast growth and high reproductive output, apparently at the cost of reduced attachment strength. This raises the prediction that its invasive impact will be more pronounced at sites subjected to low or moderate wave action at heavily exposed sites. The potential of a species for invasion is also determined by the ability of the invader to disperse. Population genetics provide indirect information about dispersal through a direct measurement of gene flow. The low genetic divergence (measured as mtDNA) of M. galloprovincialis confirms its recent arrival in South Africa. In contrast, the population genetics structure of P. perna revealed strong divergence on the south-east coast, resulting in a western lineage (straddling the distributional gap of the Benguela System), and an eastern lineage, with an overlap region of the two on the south coast between Kenton-on-Sea and Haga Haga. This genetic disjunction may be caused by Agulhas Current acting as an oceanographic barrier to larval dispersal, or by different environmental selective forces acting on regional populations. Over the last ten years, M. galloprovincialis has shown a decrease or cessation of its spread to the east in exactly the region of the genetic disjunction in P. perna, again suggesting either an oceanographic barrier to larval dispersal, or increasing selection driven by sharp gradients in environmental conditions.
3

The effects of the invasive mussel mytilus galloprovincialis and human exploitation on the indigenous mussel Perna perna on the South Coast of South Africa

Rius Viladomiu, Marc January 2005 (has links)
In South Africa, the indigenous mussel Perna perna is threatened by both an invasive species and excessive human exploitation. The Mediterranean mussel Mytilus galloprovincialis is an invasive species that has been introduced to many parts of the world. In South Africa, this species arrived in the 1970s and spread rapidly along the west coast where today it is the dominant mussel species. Along the west coast, M. galloprovincialis is competitively superior in all aspects to the indigenous mussel species, and, as a result, has displaced some of them. On the south coast, M. galloprovincialis found more oligotrophic waters, higher species richness, and a stronger competitor in the indigenous mussel P. perna. The rate of spread of M. galloprovincialis along the south coast has decreased over the last 10 years and the present eastern limit of its distribution in South African is East London. On the south coast, M. galloprovincialis has not yet completely replaced P. perna; instead, the two exhibit spatial segregation, with P. perna dominating the low shore, M. galloprovincialis the high shore and an overlap zone between the two. An experiment on competition was carried out at one site on the south coast. The results showed that, on the low shore, P. perna is a more dominant competitor for space than M. galloprovincialis. Also byssus attachment of the two species differs, P. perna being much stronger than M. galloprovincialis, which suffers high mortality due to wave action on the low shore, especially in monospecific beds. As a result, mortality of M. galloprovincialis through wave action is reduced by the presence of P. perna, which seems to confer protection against dislodgement. However, in the absence of strong wave action, P. perna competitively excludes M. galloprovincialis. Human exploitation along 160 km of coast was examined by sampling mussel populations and using aerial surveys to determine where harvesters were distributed. Collectors did not seem to discriminate between species. The study has shown that higher abundances of mussels were found in protected or inaccessible sites, while in unprotected sites mussels were scarce. Coastal nature reserves are being proven to be effective in protecting mussel populations.
4

Habitat segregation in competing species of intertidal mussels in South Africa

Bownes, Sarah January 2006 (has links)
Mytilus galloprovincialis is invasive on rocky shores on the west coast of South Africa where it has become the dominant intertidal mussel. The success of this species on the west coast and its superior competitive abilities, have led to concern that it may become invasive on the south coast at the expense of the indigenous mussel Perna perna. On shores where these species co-occur, there appears to be habitat segregation among zones occupied by mussels. M.galloprovincialis dominates the high-shore and P.perna the low-shore, with a mixed zone at mid-shore level. This study examined the factors responsible for these differences in distribution and abundance. The study was conducted in Plettenberg Bay and Tsitsikamma (70km apart) on the south coast of South Africa. Each site included two randomly selected locations (300-400m apart). A third mussel species, Choromytilus meridionalis, is found in large numbers at the sand/rock interface at one location in Plettenberg Bay. Aspects of settlement, recruitment, growth and mortality of juvenile and adult mussels were examined at different tidal heights at each site. Quantitative analysis of mussel population structure at these sites supported the initial observation of vertical habitat segregation. Post-larvae were identified to species and this was confirmed using hinge morphology and mitochondrial DNA analysis. Size at settlement was determined for each species to differentiate between primary and secondary settlement. Adult distribution of C.meridionalis was primarily determined by settlement, which was highly selective in this species. Settlement, recruitment and growth of P.perna decreased with increasing tidal height, while post-settlement mortality and adult mortality increased higher upshore. Thus all aspects of P.perna’s life history contribute to the adult distribution of this species. Presumably, the abundance of P.perna on the high-shore is initially limited by recruitment while those that survive remain prone to elimination throughout adulthood. M.galloprovincialis displayed the same patterns of settlement and recruitment as P.perna. However, post-settlement mortality in this species was consistently low in the low and high zones. Juvenile growth also decreased upshore, suggesting that M.galloprovincialis may be able to maintain high densities on the high-shore through the persistence of successive settlements of slow-growing individuals. The low cover of M.galloprovincialis on the lowshore appeared to be determined by adult interactions. M.galloprovincialis experienced significantly higher adult mortality rates than P.perna in this zone. There were seasonal variations in the competitive advantages enjoyed by each species through growth, recruitment or mortality on the low-shore. In summer, P.perna had higher recruitment rates, faster growth and lower mortality rates, while M.galloprovincialis had slightly higher recruitment rates and faster growth rates in winter. P.perna is a warm water species while M.galloprovincialis thrives on the cold-temperate west coast of South Africa. Therefore both species appear to be at the edge of their optimal temperature regimes on the south coast, which may explain the seasonal advantages of each. Nevertheless, P.perna has maintained spatial dominance on the low-shore suggesting that it may ultimately be the winner in competition between these species. M.galloprovincialis appears to have a refuge from competition with P.perna on the high-shore due to its greater tolerance of desiccation stress, while being competitively excluded from the low-shore. Warm water temperatures coupled with poor recruitment rates at most sites may limit the success of M.galloprovincialis on this coast.
5

The effect of mussel bed structure on the associated infauna in South Africa and the interaction between mussel and epibiotic barnacles

Jordaan, Tembisa Nomathamsanqa January 2011 (has links)
Mussels are important ecological engineers on intertidal rocks where they create habitat that contributes substantially to overall biodiversity. They provide secondary substratum for other free-living, infaunal or epifaunal organisms, and increase the surface area for settlement by densely packing together into complex multilayered beds. The introduction of the alien invasive mussel Mytilus galloprovincialis has extended the upper limit of mussels on the south coast of South Africa, potentially increasing habitat for associated fauna. The aim of this study was to describe the structure of mussel beds, the general biodiversity associated with multi- and monolayered mussel beds of indigenous Perna perna and alien M. galloprovincialis, and to determine the relationship between mussels and epibiotic barnacles. This was done to determine the community structure of associated macrofauna and the role of mussels as biological facilitators. Samples were collected in Plettenberg Bay, South Africa, where M. galloprovincialis dominates the high mussel zone and P. perna the low zone. Three 15 X 15 cm quadrats were scraped off the rock in the high and low zones, and in the mid zone where the two mussel species co-exist. The samples were collected on 3 occasions. In the laboratory mussel-size was measured and sediment trapped within the samples was separated through 75 μm, 1 mm and 5 mm mesh. The macrofauna was sorted from the 1 mm and 5 mm sieves and identified to species level where possible. The epibiotic relationship between mussels and barnacles was assessed by measuring the prevalence and intensity of barnacle infestation and the condition index of infested mussels. Multivariate analysis was used on the mean abundance data of the species for each treatment (Hierarchical clustering, multidimensional scaling, analysis of similarity and similarity of percentages) and ANOVA was used for most of the statistical analyses. Overall, the results showed that tidal height influences the species composition and abundance of associated fauna. While mussel bed layering influenced the accumulation of sediments; it had no significant effect on the associated fauna. Time of collection also had a strong effect. While there was an overlap of species among samples from January, May and March, the principal species contributing to similarity among the March samples were not found in the other two months. The outcomes of this study showed that low shore mussel beds not only supported a higher abundance and diversity of species, but were also the most structurally complex. Although the condition index of mussels did not correlate to the percentage cover of barnacle epibionts, it was also evident that low shore mussels had the highest prevalence. The levels of barnacle infestation (intensity) for each mussel species were highest where it was common and lowest where it was least abundant. This is viewed as a natural artefact of the distribution patterns of P. perna and M. galloprovincialis across the shore. Mussels are more efficient as facilitators on the low mussel zone than the high mussel zone possibly because they provide habitats that are more effective in protecting the associated macrofauna from the effects of competition and predation, than they are at eliminating the effects of physical stress on the high shore. Although mussels create less stressful habitats and protect organisms from the physical stress of the high shore, there are clear limitations in their ability to provide ideal habitats. The biological associations in an ecosystem can be made weak or strong depending on the external abiotic factors and the adaptability of the affected organisms.
6

Dispersal, settlement and recruitment : their influence on the population dynamics of intertidal mussels

Phillips, Tracey Elizabeth January 1995 (has links)
Recruitment of planktonic larvae into sedentary benthic populations regulates the population dynamics of marine invertebrates. The processes controlling recruitment, however, are poorly understood, and recruitment remains largely unpredictable, which complicates management of exploited shellfish resources. The mussels Perna perna, Choromytilus meridionalis and Mytilus galloprovincialis, found on the south coast of southern Africa, have planktonic larvae and sedentary adult stages. This thesis examines dispersal, settlement and early post-settlement growth and mortality, and their effect on recruitment and demography of intertidal mussel populations in the region of Algoa Bay on the south coast of southern Africa. Temporal and spatial variation in the body mass, density and size structure of mussels, the distribution of bivalve larvae on plankton grids in the nearshore zone and the distribution of a recently introduced invasive mussel, Mytilus galloprovincialis, were examined between 1989 and 1992. Furthermore, data on hourly or daily changes in wind strength and direction, air and sea surface temperatures and low and high tide levels in the study region, were obtained. There were 3-4 peaks in spawning (characterised by an abrupt decline in weight) and settlement activity annually. These peaks varied in exact timing, intensity and duration between sites and over time. However, at a site, spawning was followed by settlement 4-8 weeks later, and there was a significant (P < 0.05) direct correlation between spawning intensity prior to the appearance of a new cohort and the cohort density (settlement intensity). The stochastic spatial and temporal variation in breeding activity was superimposed on a more general pattern of a higher intensity of spawning and settlement in Algoa Bay than on the open coast, and a higher settlement intensity on coastal sandstone shores than on dune rock shores. Spawning was more frequent in winter and spring, and the probability of spawning and settlement peaked around the spring and autumn equinox, if temperature and wind conditions were suitable. Larval behaviour had little effect on their dispersal in the well-mixed nearshore region. Larvae were passively dispersed by currents, and their dispersal range and direction depended on prevailing winds and local topography. The sharp decline in density of recruit and adult M. galloprovincialis with increasing distance from the point of introduction, showed that some larvae were carried by wind generated currents over moderately long distances (-100 km). However, since most (76 %) M. galloprovincialis recruited within 4 km of the parent population, it is possible that larvae become trapped in small gullies and crevices around rocky shores, and have a limited dispersal range. This could explain the link between local patterns of spawning and settlement. The distribution and abundance of settlers on the shore was influenced by larval behaviour and the availability of settlement, substrata. Larvae preferred to settle primarily on foliose coralline algae and migrate to the adult mussel bed when they were larger (0.60-7 mm), but larvae also settled directly on adult mussels, possibly because the amount of coralline algae was limited. Both direct and secondary settlement were considered to be important in maintaining mussel populations since the rate of settlement was low(generally < 60 000.m-2). Cohort analyses showed that prior to maturity post-settlement growth (- 30 mm in 10 months) and mortality rates (60-100%) were high, but varied. When settlement intensity was low this variability uncoupled the relationship between spawning and recruitment intensity. Multiple regression analysis showed that together reproductive effort (gamete output), settlement intensity, growth and mortality prior to maturity, accounted for 76 % of the variance in recruitment into mature adult populations. The low settlement rate coupled with the short life span of mussels « 3 years), meant that populations underwent marked spatial and temporal variations in structure and abundance as settlement intensity varied, but there were consistent general differences between mussel populations on dune rock and sandstone shores in Algoa Bay and on the open coast. It was concluded from these results that, spawning intensity and post-settlement growth and mortality, rather than dispersal, regulated recruitment and the structure and abundance of intertidal P. perna and C. meridionalis populations along the south coast of southern Africa. On the basis of these results it is recommended that species with limited dispersal, variable recruitment and high natural mortality, such as P. perna, should be conserved by protecting a small part of the population in reserves, and controlling utilisation outside reserves to minimize disturbance to local brood stocks. Furthermore, since the potential for reseeding adjacent exploited areas is limited, several small reserves placed at regular intervals along the coast would be more effective than a single large reserve.

Page generated in 0.0679 seconds