Spelling suggestions: "subject:"nématicité"" "subject:"rhématicité""
1 |
Brisure de symétrie et reconstruction anisotrope de la surface de Fermi dans la phase pseudogap des cupratesCyr-Choinière, Olivier January 2014 (has links)
Des mesures de l'effet Nernst dans la phase pseudogap des cuprates YBa[indice inférieur 2]Cu[indice inférieur 3]O[indice inférieur y] (YBCO) et ceux de la famille de La[indice inférieur 2]-[indice inférieur x]Sr[indice inférieur x]CuO[indice inférieur 4] (LSCO) révèlent la sensibilité de cette sonde à l'apparition du pseudogap à la température T*. Ces mesures d'effet Nernst montrent aussi l'étendue restreinte en température des fluctuations supraconductrices par rapport à la contribution des quasiparticules normales. Ces deux observations permettent l'établissement d'un diagramme de phase dopage-température pour ces matériaux indiquant clairement les limites du pseudogap et des fluctuations supraconductrices. Ces mêmes mesures sur des cristaux d'YBCO et de Nd-LSCO démaclés et orientés dans les deux directions de la structure cristalline orthorhombique, a et b, montrent une importante anisotropie de l'effet Nernst indiquant une brisure de symétrie de rotation apparaissant justement à T*. Une compréhension plus approfondie de cette brisure de symétrie pointe vers une étude complète de l'anisotropie des coefficients de transport électrique et thermoélectrique d'YBCO et du test des relations de réciprocité d'Onsager. L'étude montre que la conductivité de Hall est isotrope et ne viole donc pas la relation d'Onsager en champ magnétique. L'observation d'une anisotropie des coefficients thermoélectriques longitudinaux et transverses indique tout d'abord la présence d'une forte nématicité, ensuite une violation de la relation de Mott. Il est suggéré que le pseudogap des cuprates consiste en une phase nématique de fluctuations d'ordre de charge se stabilisant à basse température et reconstruisant la grande surface de Fermi de trous en une surface anisotrope comportant des poches d'électrons et de trous.
|
2 |
Spectroscopie Raman du supraconducteur FeSe / Raman spectroscopy of the superconductor FeSeMassat, Pierre 07 April 2017 (has links)
La découverte en 2008 des supraconducteurs à base de fer a ouvert un nouveau champ d'investigation de la supraconductivité à haute température critique. En particulier, la phase nématique de ces matériaux pourrait jouer un rôle prépondérant dans le mécanisme de la supraconductivité. Nous avons étudié le composé FeSe par spectroscopie Raman, à pression ambiante et sous pression hydrostatique. Celui-ci ne possède pas d'ordre magnétique statique à pression ambiante, ce qui en fait un composé de choix pour l'étude de l'ordre nématique. Nous avons observé les fluctuations nématiques de charge. Leur évolution dans la phase tétragonale prouve l'existence d'une instabilité nématique d'origine électronique, qui gouverne la transition structurale. Dans la phase orthorhombique, le comportement des phonons souligne le rôle du couplage spin-phonon dans la transition nématique. Par ailleurs, la forme de la réponse Raman supraconductrice est compatible avec l'existence de deux gaps de symétrie s, dont un est anisotrope. Sous pression hydrostatique, les fluctuations nématiques s'atténuent rapidement. Le point critique quantique électronique associé se situe à très basse pression, peu avant l'apparition de l'ordre magnétique. Les fluctuations nématiques disparaissent complètement vers 2 GPa, quand la transition structurale passe de second ordre à premier ordre. C'est également proche de cette pression que se produit une anomalie dans le comportement des phonons, qui indique une modification de la structure électronique du système. Nos mesures révèlent en outre l'existence d'un pseudogap. Sa température d'apparition chute simultanément à la disparition de la phase magnétique, quand la température critique de supraconductivité atteint son maximum. Enfin, la réponse Raman de l'état supraconducteur à 7.8 GPa montre une signature claire d'un gap plein. / The discovery in 2008 of the iron-based superconductors opened a new field of investigation of high-temperature superconductivity. In particular, the nematic phase of these materials may play a major role in the mecanism of superconductivity. We studied the FeSe compound using Raman spectroscopy, at ambient pressure and under hydrostatic pressure. This material does not display any static magnetic order at ambient pressure and is therefore an excellent choice to study the nematic order. We observed the charge nematic fluctuations. Their evolution in the tetragonal phase proves the existence of an electronic nematic instability, which drives the structural transition. In the orthorhombic phase, the behaviour of the phonons underlines the role of the spin-phonon coupling in the nematic transition. Besides, the shape of the superconducting Raman response is compatible with the existence of two s-wave gaps, one of which is anisotropic. Under hydrostatic pressure, the nematic fluctuations reduce rapidly. The associated electronic quantum critical point is situated at very low pressure, just before the appearance of magnetic order. The nematic fluctuations completely disappear around 2 GPa, when the structural transition changes from second order to first order. An anomaly of the phonons also occurs close to this pressure, which indicates a modification of the electronic structure of the system. Our measurements additionally reveal the existence of a pseudogap. Its temperature of appearance reduces significantly simultaneously to the disappearance of magnetic order, when the critical temperature of superconductivity reaches its maximum. Finally, the Raman response in the superconducting state at 7.8 GPa shows a clear signature of a full gap.
|
3 |
Les polarons magnétiques et la phase nématique dans l'Eu1-xCaxB6Beaudin, Gabrielle 05 1900 (has links)
L'objectif principal de ma thèse porte sur les composés à base d'europium, une des terres rares qui est magnétique et qui forme des semiconducteurs magnétiques. Le but premier était de mesurer les corrélations magnétiques dans l'EuB6 à l'aide de la technique diffraction de neutrons à petits angles SANS (small angle neutron scattering en anglais), plus précisément de mesurer la longueur de corrélation des polarons magnétiques. La raison de sonder les polarons magnétiques dans l'EuB6 est que leur présence pourrait expliquer la grande magnétorésistance proche de la transition Curie associée avec l'ordre ferromagnétique. Ceci est une tâche particulièrement difficile puisque l'europium est un très grand absorbeur de neutrons, affectant donc la durée d'acquisition. De longs temps d'exposition étaient nécessaires pour obtenir un bruit de fond adéquat. Suite à l'analyse des données, nous avons pu conclure que les polarons magnétiques sont définitivement présents. De plus, leur présence augmente de façon non négligeable les fluctuations magnétiques. Par contre, la présence de ces fluctuations magnétiques rend la tâche de mesurer la longueur de corrélation plus difficile. La plus grande découverte de mon doctorat a été la phase nématique dans le EuB6 grâce à des mesures de magnétorésistance en fonction de l'angle. Ceci se manifestait avec une brisure de symétrie du cristal seulement dans les propriétés électroniques. Ces données m'ont permis de mieux comprendre le rôle que jouent les polarons magnétiques dans ce système. En dopant le système au calcium, nous avons confirmé la présence d'une transition vers un ordre de verre de spins à partir d'une concentration de 30% de calcium. Ce composé semble posséder la même phase nématique que le EuB6. Toutefois, cette phase est bien plus concentrée autour de la transition à cause du manque de fluctuations magnétiques au-dessus de celle-ci. / The main objective of my thesis is about Europium, a magnetic rare earth, based compounds which produces magnetic semiconductors. The primary goal was to measure magnetic correlations in the EuB6 using SANS (small angle neutron scattering) technique, more precisely, to measure the correlation length of magnetic polarons. The raison for studying magnetic polarons in EuB6 is that their presence can explain the large magnetoresistance near the Curie transition associated to a ferromagnetic order. This is a particularly difficult task since Europium (Eu2+) is a very strong neutron absorber, thus affecting the acquisition time. Long exposure times were necessary to obtain adequate background. After the analysis of the data, we have finally been able to conclude that magnetic polarons are definitely present. In addition, their presence increases significantly magnetic fluctuations. On the other hand, the presence of these magnetic fluctuations makes the task of measuring the correlation length more difficult. The biggest discovery of my Ph.D. was the nematic phase in the EuB6 using angle-based magneto-resistance measurements. The nematic phase is caracterized by a breaking of symmetry only in the electronic properties. These data have allowed me to better understand the role played by magnetic polarons in this system. By doping the system with calcium, we confirmed the presence of a transition to a spin glass order from a concentration of 30% calcium. This compound seems to have the same nematic phase as its parent compound. However, this phase is much more concentrated around the spin glass transition because of lack of magnetic fluctuations above it.
|
Page generated in 0.0518 seconds