• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tres cardinais invariantes topologicos

Gasparim, Elizabeth Terezinha, 1963- 18 August 1989 (has links)
Orientador : Ofelia Teresa Alas / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-07-14T17:42:04Z (GMT). No. of bitstreams: 1 Gasparim_ElizabethTerezinha_M.pdf: 889170 bytes, checksum: 45376c4e672a42988115252f55e0065e (MD5) Previous issue date: 1989 / Resumo: Neste trabalho estudamos os conceitos de tightness, set-tightness e T-tightness. Investigamos o comportamento de tightnes sob as compactificações de Alexandroff e Stone-Cech em alguns exemplos específicos. Calculamos tightness, T-tightness e Set-tightness em alguns espaços prdouto e provamos o seguinte resultado: Se X e Y são espaços topológicos, então: ts(X x Y) min <ts(X) ?(Y), ts(Y) ?(X) >, segue que se X é metrizável ts(X x Y) = ts(Y) para qualquer espaço Y. Mostramos um resultado semelhante em tightness / Abstract: In this work we study the concepts of tightness, set-tightness and T-tightness. We investigate the behavior of tightness under Alexandroff and Stone-Cech compactifications, in some specific examples. We calculate tightness, T-tighness, T-tightness and set-tightness for some product spaces and prove spaces and prove the following result: If X and Y are topological spaces, then ts(X x Y) min <ts(X) ?(Y), ts(Y) ?(X) >, it follows that for a meretrizable space X: ts(X x Y) = ts(Y) for any space Y. An analogous result is showed for tightness / Mestrado / Mestre em Matemática
2

Noções básicas de infinito e números cardinais

Leão, Alessandro Mignac Carneiro 27 February 2014 (has links)
Submitted by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-26T14:55:10Z No. of bitstreams: 1 arquivototal.pdf: 1060992 bytes, checksum: 69f9bccb074f43cce04d083271639cd5 (MD5) / Approved for entry into archive by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-27T11:21:46Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 1060992 bytes, checksum: 69f9bccb074f43cce04d083271639cd5 (MD5) / Made available in DSpace on 2015-11-27T11:21:46Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1060992 bytes, checksum: 69f9bccb074f43cce04d083271639cd5 (MD5) Previous issue date: 2014-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we show basic results about the so-called trans nite numbers and their cardinal arithmetic. For these purpose, we also show some results involving the set theory, as well as equinumerosity, nite sets, in nite sets, countable sets and uncountable sets. / Neste trabalho, mostramos um pouco a teoria sobre os chamados números trans finitos e sua aritmética cardinal. Para tanto, trabalhamos também alguns resultados envolvendo conjuntos, bem como equipotência, conjuntos fi nitos, infi nitos, conjuntos enumeráveis e não-enumeráveis.

Page generated in 0.0636 seconds