Spelling suggestions: "subject:"números dde Lê"" "subject:"números dee Lê""
1 |
Números de Lê e fórmulas de Lê-Iomdine para germes de hipersuperfícies singulares / Lê numbers and Lê-Iomdine fórmulas for singular hypersurfacesZanchetta, Michelle Ferreira 30 October 2006 (has links)
Considerando germes de hipersuperfícies em \'C POT.n+1\' com conjunto singular de dimensão s, Massey em [14] introduz um conjunto de (s+1) números chamados de números de Lê. Estes números se mostram como a generalização natural do número de Milnor para singularidades isoladas. O principal objetivo deste trabalho é mostrar como estes números são obtidos e que os números de Lê de uma hipersuperfície singular estão relacionados com os números de Lê de uma certa sequência de hipersuperfícies singulares \'X IND.0\',...,\'X IND.s-1\' que se aproxima da singularidade original de tal forma que os conjuntos críticos de seus termos \'X IND.i\' têm dimensão i. Essas relações são dadas pelas fórmulas de Lê-Iomdine. / For any germ of hypersurface in \'C POT. n+1\' with singular set of dimension s, Massey in [14] introduces a set of (s+1) numbers called Lê numbers. These numbers are a natural generalization of the Milnor number for isolated singularity hypersurfaces. The main goal of this work is to show how to obtain these numbers and to show the Lê numbers of a singular hypersurface are related with the the Lê numbers of a sequence of singular hypersurfaces \'X IND.0\',...,\'X IND.s-1\' which approach the original singularity in such a way that the critical set of each \'X IND.i\' has dimension i. These relationship are given by the Lê-Iomdine formulas.
|
2 |
Números de Lê e fórmulas de Lê-Iomdine para germes de hipersuperfícies singulares / Lê numbers and Lê-Iomdine fórmulas for singular hypersurfacesMichelle Ferreira Zanchetta 30 October 2006 (has links)
Considerando germes de hipersuperfícies em \'C POT.n+1\' com conjunto singular de dimensão s, Massey em [14] introduz um conjunto de (s+1) números chamados de números de Lê. Estes números se mostram como a generalização natural do número de Milnor para singularidades isoladas. O principal objetivo deste trabalho é mostrar como estes números são obtidos e que os números de Lê de uma hipersuperfície singular estão relacionados com os números de Lê de uma certa sequência de hipersuperfícies singulares \'X IND.0\',...,\'X IND.s-1\' que se aproxima da singularidade original de tal forma que os conjuntos críticos de seus termos \'X IND.i\' têm dimensão i. Essas relações são dadas pelas fórmulas de Lê-Iomdine. / For any germ of hypersurface in \'C POT. n+1\' with singular set of dimension s, Massey in [14] introduces a set of (s+1) numbers called Lê numbers. These numbers are a natural generalization of the Milnor number for isolated singularity hypersurfaces. The main goal of this work is to show how to obtain these numbers and to show the Lê numbers of a singular hypersurface are related with the the Lê numbers of a sequence of singular hypersurfaces \'X IND.0\',...,\'X IND.s-1\' which approach the original singularity in such a way that the critical set of each \'X IND.i\' has dimension i. These relationship are given by the Lê-Iomdine formulas.
|
3 |
Singularidades do tipo D(q,p) / Singularities of type D(q,p)Carvalho, Rafaela Soares de [UNESP] 31 March 2016 (has links)
Submitted by Rafaela Soares de Carvalho null (rafaela_sc_@hotmail.com) on 2016-04-12T13:05:10Z
No. of bitstreams: 1
RAFAELA_DISSERTAÇÃO_BIBLIOTECA_com reprodução xerografica.pdf: 710614 bytes, checksum: 0d4fdbb7d1fb6fb66d681143475f93ea (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-13T16:12:39Z (GMT) No. of bitstreams: 1
carvalho_rs_me_sjrp.pdf: 710614 bytes, checksum: 0d4fdbb7d1fb6fb66d681143475f93ea (MD5) / Made available in DSpace on 2016-04-13T16:12:39Z (GMT). No. of bitstreams: 1
carvalho_rs_me_sjrp.pdf: 710614 bytes, checksum: 0d4fdbb7d1fb6fb66d681143475f93ea (MD5)
Previous issue date: 2016-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho estudamos germes de funções sob a ação do grupo R_I dos germes de difeomorfismos em C^n que preservam um ideal I, descrevendo os conceitos de codimensão e determinação finita associados. Isso nos fornece ferramentas para caracterizar um tipo especial de germes com singularidades não isoladas, as chamadas singularidades do tipo D(q,p). Conseguimos ainda relacionar o conceito de R_I-estabilidade com estes germes, para o caso em que I é um ideal radical que define uma intersecção completa quase homogênea com singularidade isolada. Além disso, apresentamos um
sistema de coordenadas através do qual obtemos uma fórmula explícita para alguns dos números de Lê destes germes. / In this work we study germs of functions under the action of the R_I group of diffeomorphisms of germs in C^n which preserving an ideal I, describing the concepts of codimension and finite determination
associated. This provides the tools to characterize a particular type of germ with non isolated singularities, the so called D(q,p) singularities. We can still relate the concept of R_I-stability with these germs, in the case where I is a radical ideal that defines complete intersection with isolated singularity. Moreover, we present a coordinate system by which we obtain an explicit formula for some Lê numbers of these germs.
|
4 |
Números de Lê e classes de Milnor de hipersuperfícies analíticas complexas / Lê numbers and Milor classes of complex analytic hypersurfacesZanchetta, Michelle Ferreira 19 February 2010 (has links)
Este trabalho está dividido em duas partes distintas. Na primeira parte caracterizamos os números de Lê de polinômios que são rodutos de polinômios de Pham-Brieskorn de mesmo tipo, que denominamos de arranjos de Pham-Brieskorn, obtendo fórmulas para estes números somente utilizando o número de variáveis, os pesos e o grau de homogeneidade destes polinômios. Na segunda parte nos dedicamos a estabelecer relações entre os números de Lê, que é um conceito local, e as classes de Milnor, que são objetos globais que fornecem informações quanto a geometria e topologia de hipersuperfícies analíticas complexas. No contexto geral, usando a hipótese de especialização, relacionamos a classe de Milnor de dimensão máxima de uma hipersuperfície Z numa variedade compacta M com uma soma, sobre os estratos de uma estratificação de Whitney de Z (com estratos conexos) que estão contidos no conjunto singular, em termos do último número de Lê associado a cada estrato. Além disso, obtivemos uma caracterização da classe de Milnor de dimensão mínima via os números de Lê sem usar a hipótese de especialização. Esta classe coincide com o chamado número de Milnor de Parusinski que, assim como os números de Lê, também é uma generalização do número de Milnor / This work is divided into two distinct parts. In the first part we characterize the Lê numbers of polynomials that are products of Pham- Brieskorn polynomials of the same type that we call Pham-Brieskorn arrangements, obtaining formulas to these numbers only using the number of variables, weights and degree of homogeneity of these polynomials. In the second part we are dedicated to establishing relationships between Lê numbers, which is a local concept, and the Milnor classes, which are global objects that provide information about the geometry and topology of complex analytic hypersurfaces. In a general context, using the hypothesis of specialization we relate the top dimensional Milnor class of a hypersurface Z in a compact manifold M with a sum given in terms of the last Lê number associated to each stratum of a Whitney estratification of Z (with connected strata) that are contained in singular set. Moreover, we obtain a characterization of the Milnor class of minimum dimension via the Lê numbers without using the hypothesis of specialization. This class coincides with the Milnor number of Parusinski that, as the Lê numbers, it is also a generalization of the Milnor number
|
5 |
Números de Lê e classes de Milnor de hipersuperfícies analíticas complexas / Lê numbers and Milor classes of complex analytic hypersurfacesMichelle Ferreira Zanchetta 19 February 2010 (has links)
Este trabalho está dividido em duas partes distintas. Na primeira parte caracterizamos os números de Lê de polinômios que são rodutos de polinômios de Pham-Brieskorn de mesmo tipo, que denominamos de arranjos de Pham-Brieskorn, obtendo fórmulas para estes números somente utilizando o número de variáveis, os pesos e o grau de homogeneidade destes polinômios. Na segunda parte nos dedicamos a estabelecer relações entre os números de Lê, que é um conceito local, e as classes de Milnor, que são objetos globais que fornecem informações quanto a geometria e topologia de hipersuperfícies analíticas complexas. No contexto geral, usando a hipótese de especialização, relacionamos a classe de Milnor de dimensão máxima de uma hipersuperfície Z numa variedade compacta M com uma soma, sobre os estratos de uma estratificação de Whitney de Z (com estratos conexos) que estão contidos no conjunto singular, em termos do último número de Lê associado a cada estrato. Além disso, obtivemos uma caracterização da classe de Milnor de dimensão mínima via os números de Lê sem usar a hipótese de especialização. Esta classe coincide com o chamado número de Milnor de Parusinski que, assim como os números de Lê, também é uma generalização do número de Milnor / This work is divided into two distinct parts. In the first part we characterize the Lê numbers of polynomials that are products of Pham- Brieskorn polynomials of the same type that we call Pham-Brieskorn arrangements, obtaining formulas to these numbers only using the number of variables, weights and degree of homogeneity of these polynomials. In the second part we are dedicated to establishing relationships between Lê numbers, which is a local concept, and the Milnor classes, which are global objects that provide information about the geometry and topology of complex analytic hypersurfaces. In a general context, using the hypothesis of specialization we relate the top dimensional Milnor class of a hypersurface Z in a compact manifold M with a sum given in terms of the last Lê number associated to each stratum of a Whitney estratification of Z (with connected strata) that are contained in singular set. Moreover, we obtain a characterization of the Milnor class of minimum dimension via the Lê numbers without using the hypothesis of specialization. This class coincides with the Milnor number of Parusinski that, as the Lê numbers, it is also a generalization of the Milnor number
|
Page generated in 0.0345 seconds