• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinetics of the reaction of N-Methylacetamide with hypobromous acid

Knox, Jane Levitas January 1968 (has links)
Thesis (M.A.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / N-methylacetamide reacts with hypobromous acid to form N-bromo-N-methylacetamide and water. The kinetics of the reaction were studied spectrophotometrically using a Cary 14 spectrophotometer to observe the absorption of hypobromous acid at 3300 A. The reaction in aqueous solution is reversible under the mildly basic conditions at which it was studied and is of the type A + B --> C if water is disregarded since its concentration remains constant. Borate and carbonate buffers, pH 8.5-10.0, were used to keep the pH constant. An analysis of the kinetic data showed that the undissociated hypobromous acid reacts with N-methylacetamide in a second order reaction. Extinction coefficients of hypobromous acid were determined using concentrations known from iodometric titrations. The values increase with pH from 111 liters/mole at pH 8.5 to 265 liters/mole at pH 10 in borate buffers at 26.5°C. Extinction coefficients of N-bromo-N-methylacetamide were determined by forcing the reaction to completion using excess N-methylacetamide which does not absorb at 3300 A. Values of 24-26 liters/mole in borate buffers at 26.5°C were found. Extinction coefficients in carbonate buffer are of the same order of magnitude. [TRUNCATED] / 2031-01-01
2

NMR DIFFUSION MEASUREMENTS OF COMPARTMENTALIZED AND MULTICOMPONENT BIOLOGICAL SYSTEMS: Studies of Tropoelastin, the Self Association of N Methylacetamide, and q-Space Analysis of Real and Model Cell Suspensions

Regan, David Gabriel January 2002 (has links)
Molecular diffusion is an inherent feature of all fluid systems. The processes and interactions that characterize these systems are in some way dependent upon the mobility of the component molecules. Pulsed field-gradient spin-echo nuclear magnetic resonance (PGSE NMR) is a powerful tool for the study of molecular diffusion; for heterogeneous systems, such as those typically found in biology, this technique is unsurpassed in the diversity of systems that yield to its probing. The aim of the work presented in this thesis was to use an integrated NMR-based approach, in conjunction with computer modeling, for the study of molecular diffusion in compartmentalized and multicomponent biological systems. Erythrocyte suspensions provided an ideal experimental system for the study of compartmentalized diffusion in cells. Water exchanges rapidly between the intra- and extracellular regions and, as the major constituent of the cell, provides a strong and predominant proton NMR signal. In addition, the cells are known to align in the strong static magnetic field of the spectrometer. As a consequence of these two properties, the signal intensity from a suitably designed series of PGSE NMR experiments exhibits a series of maxima and minima when graphed as a function of the magnitude of the spatial wave number vector q. The apparently periodic phenomenon is mathematically analogous to optical diffraction and interference and is referred to here as diffusion-coherence. It is the characterization of this phenomenon, with the aid of computer-based models, which was the focus of a major section of the work described herein. Two quite distinct molecular systems formed the basis of the work in which I investigated diffusion in multicomponent systems. Both systems involved molecules that undergo self-association such that at equilibrium a population distribution of different oligomeric species is present. The first of these was tropoelastin, the monomeric subunit of elastin, which under certain conditions aggregates to form a coacervate. The second system was N-methylacetamide (NMA) which also undergoes extensive self-association. NMA oligomers have previously been studied as peptide analogues due to the presence in the monomer of a peptide linkage. In this work the aim was to use PGSE NMR diffusion measurements, in a manner that is in many ways analogous to analytical ultracentrifugation, to obtain estimates of hydrodynamic and thermodynamic parameters. Computer modeling was also used extensively in this section of work for the interpretation of the experimental data.
3

NMR DIFFUSION MEASUREMENTS OF COMPARTMENTALIZED AND MULTICOMPONENT BIOLOGICAL SYSTEMS: Studies of Tropoelastin, the Self Association of N Methylacetamide, and q-Space Analysis of Real and Model Cell Suspensions

Regan, David Gabriel January 2002 (has links)
Molecular diffusion is an inherent feature of all fluid systems. The processes and interactions that characterize these systems are in some way dependent upon the mobility of the component molecules. Pulsed field-gradient spin-echo nuclear magnetic resonance (PGSE NMR) is a powerful tool for the study of molecular diffusion; for heterogeneous systems, such as those typically found in biology, this technique is unsurpassed in the diversity of systems that yield to its probing. The aim of the work presented in this thesis was to use an integrated NMR-based approach, in conjunction with computer modeling, for the study of molecular diffusion in compartmentalized and multicomponent biological systems. Erythrocyte suspensions provided an ideal experimental system for the study of compartmentalized diffusion in cells. Water exchanges rapidly between the intra- and extracellular regions and, as the major constituent of the cell, provides a strong and predominant proton NMR signal. In addition, the cells are known to align in the strong static magnetic field of the spectrometer. As a consequence of these two properties, the signal intensity from a suitably designed series of PGSE NMR experiments exhibits a series of maxima and minima when graphed as a function of the magnitude of the spatial wave number vector q. The apparently periodic phenomenon is mathematically analogous to optical diffraction and interference and is referred to here as diffusion-coherence. It is the characterization of this phenomenon, with the aid of computer-based models, which was the focus of a major section of the work described herein. Two quite distinct molecular systems formed the basis of the work in which I investigated diffusion in multicomponent systems. Both systems involved molecules that undergo self-association such that at equilibrium a population distribution of different oligomeric species is present. The first of these was tropoelastin, the monomeric subunit of elastin, which under certain conditions aggregates to form a coacervate. The second system was N-methylacetamide (NMA) which also undergoes extensive self-association. NMA oligomers have previously been studied as peptide analogues due to the presence in the monomer of a peptide linkage. In this work the aim was to use PGSE NMR diffusion measurements, in a manner that is in many ways analogous to analytical ultracentrifugation, to obtain estimates of hydrodynamic and thermodynamic parameters. Computer modeling was also used extensively in this section of work for the interpretation of the experimental data.

Page generated in 0.0562 seconds