• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations of Scale-Free Cosmologies for the Small-Scale Cold Dark Matter Universe

ELAHI, PASCAL 26 September 2009 (has links)
Cosmological simulations show that dark matter halos contain a wealth of substructure. These subhalos are assumed have a mass distribution that extends down to the smallest mass in the Cold Dark Matter (CDM) hierarchy, which lies below the current resolution limit of simulations. Substructure has important ramifications for indirect dark matter detection experiments as the signal depends sensitively on the small-scale density distribution of dark matter in the Galactic halo. A clumpy halo produces a stronger signal than halos where the density is a smooth function of radius. However, the small-scale Universe presents a daunting challenge for models of structure formation. In the CDM paradigm, structures form in a hierarchical fashion, with small-scale perturbations collapsing first to form halos that then grow via mergers. However, near the bottom of the hierarchy, dark matter structures form nearly simultaneously across a wide range of scales. To explore these small scales, I use a series of simulations of scale-free cosmological models, where the initial density power spectrum is a power-law. I can effectively examine various scales in the Universe by using the index in these artificial cosmologies as a proxy for scale. This approach is not new, but my simulations are larger than previous such simulations by a factor of 3 or more. My results call into question the often made assumption that the subhalo population is scale-free. The subhalo population does depend on the mass of the host. By combining my study with others, I construct a phenomenological model for the subhalo mass function. This model shows that the full subhalo hierarchy does not greatly boost the dark matter annihilation flux of a host halo. Thus, the enhancement of the Galactic halo signature due to substructure can not alone account the observed flux of cosmic rays produced by annihilating dark matter. Finally, I examine the nonlinear power spectrum, which is used to determine cosmological parameters based on large-scale, observational surveys. I find that in this nonlinear regime, my results are not consistent with currently used fitting formulae and present my own empirical formula. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-09-25 01:01:39.714
2

Demographics of dark-matter haloes in standard and non-standard cosmologies

Mead, Alexander James January 2014 (has links)
This thesis explores topics related to the formation and development of the large-scale structure in the Universe, with the focus being to compute properties of the evolved non-linear density field in an approximate way. The first three chapters form an introduction: Chapter 1 contains the theoretical basis of modern cosmology, Chapter 2 discusses the role of N-body simulations in the study of structure formation and Chapter 3 considers the phenomenological halo model. In Chapter 4 a novel method of computing the matter power spectrum is developed. This method uses the halo model directly to make accurate predictions for the matter spectrum. This is achieved by fitting parameters of the model to spectra from accurate simulations. The final predictions are good to 5% up to k = 10 hMpc-1 across a range of cosmological models at z = 0, however accuracy degrades at higher redshift and at quasi-linear scales. Chapter 5 is dedicated to a new method of rescaling a halo catalogue that has previously been generated from a simulation of a specific cosmological model to a different model; a gross rescaling of the simulation box size and redshift label takes place, then individual halo positions are modified in accord with the large scale displacement field and their internal structure is altered. The final power spectrum of haloes can be matched at the 5% level up to k = 1 hMpc-1, as can the spectrum of particles within haloes reconstituted directly from the rescaled catalogues. Chapter 6 applies the methods of the previous two chapters to modified gravity models. This is done in as general a way possible but tests are restricted to f(R) type models, which have a scale-dependent linear growth rate as well as having 'chameleon screening' - by which modifications to gravity are screened within some haloes. Taking these effects into account leads to predictions of the matter spectrum at the 5% level and rescaled halo distributions that are accurate to 5% in both real and redshift space. For the spectrum of halo particles it is demonstrated that accurate results may be obtained by taking the enhanced gravity in some haloes into account.
3

A Bayesian/MCMC Approach to Galaxy Modelling: NGC 6503

PUGLIELLI, DAVID 11 January 2010 (has links)
We use Bayesian statistics and Markov chain Monte Carlo (MCMC) techniques to construct dynamical models for the spiral galaxy NGC 6503. The constraints include surface brightness profiles which display a Freeman Type II structure; HI and ionized gas rotation curves; the stellar rotation, which is nearly coincident with the ionized gas curve; and the line of sight stellar dispersion, which displays a $\sigma-$drop at the centre. The galaxy models consist of a S\'rsic bulge, an exponential disc with an optional inner truncation and a cosmologically motivated dark halo. The Bayesian/MCMC technique yields the joint posterior probability distribution function for the input parameters, allowing constraints on model parameters such as the halo cusp strength, structural parameters for the disc and bulge, and mass-to-light ratios. We examine several interpretations of the data: the Type II surface brightness profile may be due to dust extinction, to an inner truncated disc or to a ring of bright stars; and we test separate fits to the gas and stellar rotation curves to determine if the gas traces the gravitational potential. We test each of these scenarios for bar stability, ruling out dust extinction. We also find that the gas cannot trace the gravitational potential, as the asymmetric drift is then too large to reproduce the stellar rotation. The disc is well fit by an inner-truncated profile, but the possibility of ring formation by a bar to reproduce the Type II profile is also a realistic model. We further find that the halo must have a cuspy profile with $\gamma \gtrsim 1$; the bulge has a lower $M/L$ than the disc, suggesting a star forming component in the centre of the galaxy; and the bulge, as expected for this late type galaxy, has a low S\'{e}rsic index with $n_b\sim1-2$, suggesting a formation history dominated by secular evolution. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2010-01-10 00:11:41.946
4

The impact of environment and mergers on the H I content of galaxies in hydrodynamic simulations

Rafieferantsoa, Mika Harisetry January 2015 (has links)
>Magister Scientiae - MSc / We quantitatively examine the effects of merger and environment within a cosmological hydrodynamic simulation. We show that our simulation model broadly reproduces the observed scatter in H I at a given stellar mass as quantified by the HI mass function in bins of stellar mass, as well as the H I richness versus local galaxy density. The predicted H I fluctuations and environmental effects are roughly consistent with data, though some discrepancies are present at group scales. For satellite galaxies in & 1012Mhalos, the H I richness distribution is bimodal and drops towards the largest halo masses. The depletion rate of H I once a galaxy enters a more massive halo is more rapid at higher halo mass, in contrast to the specific star formation rate which shows much less variation in the attenuation rate versus halo mass. This suggests that, up to halo mass scales probed here (. 1014M), star formation is mainly attenuated by starvation, but H I is additionally removed by stripping once a hot gaseous halo is present. In low mass halos, the H I richness of satellites is independent of radius, while in high mass halos they become gas-poor towards the center, confirming the increasing strength of the stripping with halo mass. By tracking the progenitors of galaxies, we show that the gas fraction of satellite and central galaxiesdecreases from z =5 ! 0, tracking each other until z⇠1 after which the satellites’ H I content drops much more quickly, particularly for the highest halo masses. Mergers somewhat increase the H I richness and its scatter about the mean relation, but these variations are consistent with arising form inflow fluctuations, unlike in the case of star formation where mergers boost it above that expected from inflow fluctuations. In short, our simulations suggest that the H I content in galaxies is determined by their ability to accrete gas from their surroundings, with stripping effects playing a driving role once a hot gaseous halo is present.
5

Powerlaws, Bumps and Wiggles: Self-Similar Models in the Era of Precision Cosmology

Orban, Christopher M. 21 March 2011 (has links)
No description available.
6

High-Precision Large-Scale Structure: The Baryon Acoustic Oscillations and Passive Flow

Seo, Hee-Jong January 2007 (has links)
We present a precision study of large-scale structure from large galaxy redshift surveys. We focus on two main subjects of large-scale structure: precisioncosmology with baryon acoustic oscillations from large galaxy surveys and the evolution of galaxy clustering for passively flowing galaxies.The baryon acoustic oscillations in galaxy redshift surveys can serve as an efficient standard ruler to measure the cosmological distance scale, i.e., theangular diameter distances and Hubble parameters, as a function of redshift, and therefore dark energy parameters. We use a Fisher matrix formalism to show that such a standard ruler tests can constrain the angular diameter distances and Hubble parameters to a precision of a few percent, thereby providing robust measurements of present-day dark energy density and its time-dependence.We use N-body simulations to investigate possible systematic errors in the recovery of the cosmological distance scale from galaxy redshift surveys. We show that the baryon signature on linear and quasi-linear scales is robust against nonlinear growth, redshift distortions, and halo (or galaxy) bias, albeit partial obscuration of the signature occurs due to nonlinear growth and redshift distortions.We present the improved Fisher matrix formalism which incorporates the Lagrangian displacement field to describe the nonlinear effects on baryon signature as a function of time and scale. We present a physically motivated, reduced 2-dimensional fitting formula for the full Fisher matrix formalism. We show that distance precision from the revised formalism is in excellent agreement with distance precision from N-body simulations.Finally, we present a numerical study of the evolution of galaxy clustering when galaxies flow passively from high redshift to low redshift, that is, without merging or new formations. We show that passive flow evolution induces interesting characteristics in the galaxy distribution at low redshift: we find an asymptotic convergence in galaxy clustering and halo occupation distribution regardless of the initial distribution of galaxies.
7

Towards Robust Quantification of Cosmological Errors

Harnois-Déraps, Joachim 07 August 2013 (has links)
The method of baryon acoustic oscillation (BAO) is among the best probes of the dark energy equation of state, and worldwide efforts are being invested in order to perform measurements that are accurate at the percent level. In current data analyses, however, estimates of the error about the BAO are based on the assumption that the density field can be treated as Gaussian, an assumption that becomes less accurate as smaller scales are included in the measurement. It was recently shown from large samples of N-body simulations that the error bars about the BAO obtained this way are in fact up to 15-20 per cent too small. This important bias has shaken the confidence in the way error bars are calculated, and is motivating developments of analyses pipelines that include non-Gaussian features in the matter density fields. In this thesis, we propose general strategies to incorporate non-Gaussian effects in the context of a survey. After describing the high performance N-body code that we used, we present novel properties of the non-Gaussian uncertainty about the matter power spectrum, and explain how these combine with a general survey selection function. Assuming that the non-Gaussian features that are observed in the simulations correspond to those of Nature, this approach is the first unbiased measurement of the error bar about the power spectrum, which simultaneously removes the undesired bias on the BAO error. We then relax this assumption about the similitude of the non-Gaussian natures in simulations and data, and develop tools that aim at measuring the non-Gaussian error bars exclusively from the data. It is possible to improve the constraining power of non-Gaussian analyses with `Gaussianizations' techniques, which map the observed fields into something more Gaussian. We show that two of such techniques maximally recover degrees of freedom that were lost in the gravitational collapse. Finally, from a large sample of high resolution N-body realizations, we construct a series of weak gravitational lensing distortion maps and provide high resolution halo catalogues that are used by the CFTHLenS community to calibrate their estimators and study many secondary effects with unprecedented accuracy.
8

Towards Robust Quantification of Cosmological Errors

Harnois-Déraps, Joachim 07 August 2013 (has links)
The method of baryon acoustic oscillation (BAO) is among the best probes of the dark energy equation of state, and worldwide efforts are being invested in order to perform measurements that are accurate at the percent level. In current data analyses, however, estimates of the error about the BAO are based on the assumption that the density field can be treated as Gaussian, an assumption that becomes less accurate as smaller scales are included in the measurement. It was recently shown from large samples of N-body simulations that the error bars about the BAO obtained this way are in fact up to 15-20 per cent too small. This important bias has shaken the confidence in the way error bars are calculated, and is motivating developments of analyses pipelines that include non-Gaussian features in the matter density fields. In this thesis, we propose general strategies to incorporate non-Gaussian effects in the context of a survey. After describing the high performance N-body code that we used, we present novel properties of the non-Gaussian uncertainty about the matter power spectrum, and explain how these combine with a general survey selection function. Assuming that the non-Gaussian features that are observed in the simulations correspond to those of Nature, this approach is the first unbiased measurement of the error bar about the power spectrum, which simultaneously removes the undesired bias on the BAO error. We then relax this assumption about the similitude of the non-Gaussian natures in simulations and data, and develop tools that aim at measuring the non-Gaussian error bars exclusively from the data. It is possible to improve the constraining power of non-Gaussian analyses with `Gaussianizations' techniques, which map the observed fields into something more Gaussian. We show that two of such techniques maximally recover degrees of freedom that were lost in the gravitational collapse. Finally, from a large sample of high resolution N-body realizations, we construct a series of weak gravitational lensing distortion maps and provide high resolution halo catalogues that are used by the CFTHLenS community to calibrate their estimators and study many secondary effects with unprecedented accuracy.
9

Hydrodynamické a N-částicové simulace srážek asteroidů / Hydrodynamic and N-particle simulations of asteroid collisions

Ševeček, Pavel January 2016 (has links)
We study asteroidal breakups, i.e. fragmentations of targets, subsequent gravitational reaccumulation and formation of small asteroid families. We fo- cused on parent bodies with diameters Dpb = 10 km. Simulations were per- formed with a smoothed-particle hydrodynamics (SPH) code combined with an efficient N-body integrator. We assumed various projectile sizes, impact veloci- ties and angles (125 runs in total). Resulting size-frequency distributions are sig- nificantly different from results of scaled-down simulations with Dpb = 100 km targets (Durda et al. 2007). We thus derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used in N-body simulations of asteroid families. Finally, we discuss several uncertainties related to SPH simulations.
10

In Search of Empty Places: Voids in the Distribution of Galaxies

Bucklein, Brian K. 06 July 2010 (has links) (PDF)
We investigate several techniques to identify voids in the galaxy distribution of matter in the universe. We utilize galaxy number counts as a function of apparent magnitude and Wolf plots to search a two- or three-dimensional data set in a pencil-beam fashion to locate voids within the field of view. The technique is able to distinguish between voids that represent simply a decrease in density as well as those that show a build up of galaxies on the front or back side of the void. This method turns out to be primarily useable only at relatively short range (out to about 200 Mpc). Beyond this distance, the characteristics indicating a void become increasingly difficult to separate from the statistical background noise. We apply the technique to a very simplified model as well as to the Millennium Run dark matter simulation. We then compare results with those obtained on the Sloan Digital Sky Survey. We also created the Watershed Void Examiner (WaVE) which treats densities in a fashion similar to elevation on a topographical map, and then we allow the "terrain" to flood. The flooded low-lying regions are identified as voids, which are allowed to grow and merge as the level of flooding becomes higher (the overdensity threshold increases). Void statistics can be calculated for each void. We also determine that within the Millennium Run semi-analytic galaxy catalog, the walls that separate the voids are permeable at a scale of 4 Mpc. For each resolution that we tested, there existed a characteristic density at which the walls could be penetrated, allowing a single void to grow to dominate the volume. With WaVE, we are able to get comparable results to those previously published, but often with fewer choices of parameters that could bias the results. We are also able to determine the the density at which the number of voids peaks for different resolutions as well as the expected number of void galaxies. The number of void galaxies is amazingly consistent at an overdensity of −0.600 at all resolutions, indicating that this could be a good choice for comparing models.

Page generated in 0.1051 seconds