• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of Novel Polypeptide-Silica Hybrid Materials through Surface-Initiated N-carboxyanhydride Polymerization

Lunn, Jonathan D. 2010 May 1900 (has links)
There is an increasing demand for materials that are physically robust, easily recovered, and able to perform a wide variety of chemical functions. By combining hard and soft matter synergistically, organic-inorganic hybrid materials are potentially useful for a number of applications (e.g. catalysis, separations, sensing). In this respect, organic/ordered mesoporous silica (OMS) hybrids have attracted considerable attention, with an increasing emphasis on complex organic moieties achieved through multi-step reactions and polymerizations. It is on this front that we have focused our work, specifically in regard to polypeptides. Polypeptides are well suited organic components for hybrids as they provide a wide range of possible side chain chemistries (NH2, -SH, -COOH, -OH, etc.), chirality, and have conformations that are known to be responsive to external stimuli (pH, electrolytes, solvents, etc.). Our work has shown that N-carboxyanhydride chemistry offers a facile single step approach to the incorporation of dense polypeptide brushes in OMS. Modifying the initiator loading, pore size, pore topology, and monomer identity significantly impacted the properties of the obtained composites and peptide brush layers. Extending this work, a synthesis paradigm for preferentially grafting poly-L-lysine to the external and internal surfaces of SBA-15, a widely used OMS material, was developed. We observed that the pores of these hybrids could be opened and closed by the reversible swelling of the polypeptide layer. Similarly, novel bifunctional hybrids were synthesized by grafting polypeptides to the external surface of monodisperse OMS spheres that contain a thiol-functionalized core. The accessibility of the internal thiols to a fluorescent dye shows the potential of these hybrids for applications such as controlled uptake/release.
2

Developing a Surface-initiated Polymerization System from a Redox-switchable Catalyst for Polyamide Synthesis:

Xiao, Kexing January 2022 (has links)
Thesis advisor: Jeffery A. Byers / Thesis advisor: Petter Zhang / This thesis discusses the development of a surface-initiated N-carboxyanhydride (NCA) polymerization system from a redox-switchable catalyst for polyamide synthesis and further efforts towards the synthesis of polypeptide-based materials through the integration of NCA synthesis and its polymerization. In Chapter one, the most used methods to obtain polypeptide-based materials as well as their significant limitations are introduced. A new strategy is presented to access the polypeptide-based materials based on the integrated catalysis under spatial and temporal control. In Chapter two, a strategy to allow the attachment of a redox-switchable NCA polymerization catalyst on surface of titania for the synthesis of polyamide brushes will be demonstrated. Investigations about the kinetics of this surface-initiated ring-opening polymerization will be presented by carrying out the reaction in batch and under flow. Chapter three will discuss efforts towards achieving the integration of NCA synthesis and NCA polymerization, which includes an additional anchoring method to support polymerization catalyst and compatibility tests between the two separate reactions. / Thesis (MS) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Page generated in 0.1019 seconds