• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<i>N</i>-Sulfation and Polymerization in Heparan Sulfate Biosynthesis

Presto, Jenny January 2006 (has links)
<p>Heparan sulfate (HS) is a glycosaminoglycan present in all cell types covalently attached to core proteins forming proteoglycans. HS interacts with different proteins and thereby affects a variety of processes. The biosynthesis of HS takes place in the Golgi network where a complex of the enzymes EXT1 and EXT2 adds N-acetyl glucosamine and glucuronic acid units to the growing chain. The HS chain is <i>N</i>-sulfated by the enzyme <i>N</i>-deacetylase <i>N</i>-sulfotransferase (NDST). <i>N</i>-Sulfation occurs in domains where further modifications (including <i>O</i>-sulfations) take place, giving the chain a complex sulfation pattern.</p><p>In this thesis, new data about the regulation of NDST enzyme activity is presented. By studying NDST1 with active site mutations overexpressed in HEK 293 cells we show that <i>N</i>-deacetylation is the rate-limiting step in HS <i>N</i>-sulfation and that two different NDST molecules can work on the same GlcN unit.</p><p>By analyzing recombinant forms of NDST1 and NDST2 we determined the smallest substrate for <i>N</i>-deacetylation to be an octasaccharide. Importantly, the sulfate donor PAPS was shown to regulate the NDST enzymes to modify the HS chain in domains and that binding of PAPS had a stimulating effect on <i>N</i>-deacetylase activity. </p><p>We could also show that increased levels of NDST1 were obtained when NDST1 was coexpressed with EXT2, while coexpression with EXT1 had the opposite effect. We suggest that EXT2 binds to NDST1, promoting the transport of functional NDST1 to the Golgi network and that EXT1 competes for binding to EXT2. </p><p>Using cell lines overexpressing EXT proteins, it was demonstrated that overexpression of EXT1 increases HS chain length and coexpression of EXT2 results in even longer chains. The enhancing effect of EXT2 was lost when EXT2 was carrying mutations identical to those found in patients with hereditary multiple exostoses, a syndrome characterized by cartilage-capped bony outgrowths at the long bones.</p><p>.</p>
2

N-Sulfation and Polymerization in Heparan Sulfate Biosynthesis

Presto, Jenny January 2006 (has links)
Heparan sulfate (HS) is a glycosaminoglycan present in all cell types covalently attached to core proteins forming proteoglycans. HS interacts with different proteins and thereby affects a variety of processes. The biosynthesis of HS takes place in the Golgi network where a complex of the enzymes EXT1 and EXT2 adds N-acetyl glucosamine and glucuronic acid units to the growing chain. The HS chain is N-sulfated by the enzyme N-deacetylase N-sulfotransferase (NDST). N-Sulfation occurs in domains where further modifications (including O-sulfations) take place, giving the chain a complex sulfation pattern. In this thesis, new data about the regulation of NDST enzyme activity is presented. By studying NDST1 with active site mutations overexpressed in HEK 293 cells we show that N-deacetylation is the rate-limiting step in HS N-sulfation and that two different NDST molecules can work on the same GlcN unit. By analyzing recombinant forms of NDST1 and NDST2 we determined the smallest substrate for N-deacetylation to be an octasaccharide. Importantly, the sulfate donor PAPS was shown to regulate the NDST enzymes to modify the HS chain in domains and that binding of PAPS had a stimulating effect on N-deacetylase activity. We could also show that increased levels of NDST1 were obtained when NDST1 was coexpressed with EXT2, while coexpression with EXT1 had the opposite effect. We suggest that EXT2 binds to NDST1, promoting the transport of functional NDST1 to the Golgi network and that EXT1 competes for binding to EXT2. Using cell lines overexpressing EXT proteins, it was demonstrated that overexpression of EXT1 increases HS chain length and coexpression of EXT2 results in even longer chains. The enhancing effect of EXT2 was lost when EXT2 was carrying mutations identical to those found in patients with hereditary multiple exostoses, a syndrome characterized by cartilage-capped bony outgrowths at the long bones. .
3

Glycosaminoglycan Biosynthesis in Zebrafish

Filipek-Górniok, Beata January 2015 (has links)
Proteoglycans (PGs) are composed of highly sulfated glycosaminoglycans chains (GAGs) attached to specific core proteins. They are present in extracellular matrices, on the cell surface and in storage granules of hematopoietic cells. Heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS) GAGs play indispensable roles in a wide range of biological processes, where they can serve as protein carriers, be involved in growth factor or morphogen gradient formation and act as co-receptors in signaling processes. Protein binding abilities of GAGs are believed to be predominantly dependent on the arrangement of the sugar modifications, sulfation and epimerization, into specific oligosaccharide sequences. Although the process of HS and CS/DS assembly and modification is not fully understood, a set of GAG biosynthetic enzymes have been fairly well studied and several mutations in genes encoding for this Golgi machinery have been linked to human genetic disorders. This thesis focuses on the zebrafish N-deacetylase/N-sulfotransferase gene family, encoding key enzymes in HS chain modification, as well as glycosyltransferases responsible for chondroitin/dermatan sulfate elongation present in zebrafish. Our data illustrates the strict spatio-temporal expression of both the NDST enzymes (Paper I) and CS/DS glycosyltransferases (Paper II) in the developing zebrafish embryo. In Paper III we took advantage of the four preexisting zebrafish mutants with defective GAG biosynthesis. We could demonstrate a relation between HS content and the severity of the pectoral fin defects, and additionally correlate impaired HS biosynthesis with altered chondrocyte intercalation. Interestingly, altered CS biosynthesis resulted in loss of the chondrocyte extracellular matrix. One of the main findings was the demonstration of the ratio between the HS biosynthesis enzyme Extl3 and the Csgalnact1/Csgalnact2 proteins, as a main factor influencing the HS/CS ratio. In Paper IV we used the newly developed CRISPR/Cas9 technique to create a collection of zebrafish mutants with defective GAG biosynthetic machineries. Lack of phenotypes linked to null-mutations of most of the investigated genes is striking in this study.
4

Heparan Sulfate Biosynthesis – Clues from Knockout Mice

Ledin, Johan January 2004 (has links)
<p>In the extracellular space, many specialized proteins are located to support cells and to mediate cell-cell signalling. One class of such molecules is heparan sulfate (HS) proteoglycans, which are proteins with different properties and locations but all of them decorated with long unbranched HS polysaccharide chains. During biosynthesis the HS chains are modified by sulfation and a C5-epimerase converts some glucuronic acid residues to iduronic acid. The patterns of the modifications vary distinctly between tissues and developing stages and give HS chains different affinity for biologically important proteins. Thus, the regulation of HS biosynthesis is likely to influence a wide variety of biological events.</p><p>This thesis focuses on the biosynthesis of HS in animals with targeted disruptions in genes important for HS production. The N-deacetylase N-sulfotransferase (NDST) is a key enzyme in HS biosynthesis, directing other modifications. We show that NDST isoforms have very different roles in HS biosynthesis. Inactivation of NDST1 affects HS biosynthesis in all tissues. In embryonic liver HS from NDST1-/- mice the N-sulfation was decresed with twothirds, while the absence of NDST2 did not affect HS structure. In the absence of NDST1 in the liver, however, NDST2 is active in HS N-sulfation. </p><p>In a study of embryonic stem cells lacking both NDST1 and NDST2, no N-sulfate groups could be detected. 6-O-sulfate groups were, however, still present at half of its normal level. This was an unexpected finding since 6-O-sulfotransferases have been thought to be strictly dependent on N-sulfate groups for substrate recognition.</p><p>By adapting an automated method for HS analysis to mammalian tissues, we could extend our analyses to more tissues and other transgene models. We also developed a protocol to create a sensitive “fingerprint” of HS structure. With these methods we could determine the individual HS structure of different mouse tissues. </p>
5

Heparan Sulfate and Development : A Study of NDST Deficient Mice and Embryonic Stem Cells

Holmborn, Katarina January 2006 (has links)
<p>Heparan sulfate (HS) proteoglycans consist of sulfated HS chains covalently bound to core proteins. They are ubiquitously expressed, on the cell surface and in the extracellular matrix, throughout the body. During biosynthesis the HS chain is modified to generate a highly variable pattern of sulfated residues, able to interact with a wide variety of ligands, such as growth factors, morphogens and extracellular matrix molecules. The presence of HS proteoglycans is crucial during various developmental processes as they are involved in generation of morphogen gradients and influence the function of several growth factor pathways essential for tissue assembly and differentiation.</p><p>In this thesis the phenotypes of two mouse strains, deficient in different isoforms of the HS biosynthetic enzyme N-deacetylase/N-sulfotransferase (NDST) have been analyzed. In addition, NDST deficient embryonic stem (ES) cells have been analyzed with regard to HS structure and differentiation capacity. Mice deficient in NDST1 die peri-natally. The embryos display an overall low-sulfated HS and several developmental defects, with a lung phenotype as the predominant cause of death. Mice deficient in NDST2 lack sulfated heparin in connective tissue type mast cells while HS structure is unaltered. These results indicate that NDST1 is the isoform mainly responsible for HS biosynthesis during development. However, NDST1/2 deficient embryos do not survive beyond E5.5 and have a greatly disturbed morphology, suggesting that NDST2 has an essential role during early embryonic development. HS synthesized by NDST1/2 deficient ES cells had a total lack of N-sulfate groups while, interestingly, about half of the 6-O-sulfate groups remained. This result was unexpected since 6-O-sulfotransferases have been thought to be strictly dependent on N-sulfate groups for substrate recognition. Further characterization of the NDST1/2 deficient ES cells during in vitro differentiation demonstrated that the expression pattern of markers for all three germ layers was disturbed. In addition, it was demonstrated that NDST1 is not needed for mast cell development, that lack of NDST2 results in abnormal mast cells and that no mast cells is formed from NDST1/2 deficient ES cells.</p>
6

Heparan Sulfate Biosynthesis – Clues from Knockout Mice

Ledin, Johan January 2004 (has links)
In the extracellular space, many specialized proteins are located to support cells and to mediate cell-cell signalling. One class of such molecules is heparan sulfate (HS) proteoglycans, which are proteins with different properties and locations but all of them decorated with long unbranched HS polysaccharide chains. During biosynthesis the HS chains are modified by sulfation and a C5-epimerase converts some glucuronic acid residues to iduronic acid. The patterns of the modifications vary distinctly between tissues and developing stages and give HS chains different affinity for biologically important proteins. Thus, the regulation of HS biosynthesis is likely to influence a wide variety of biological events. This thesis focuses on the biosynthesis of HS in animals with targeted disruptions in genes important for HS production. The N-deacetylase N-sulfotransferase (NDST) is a key enzyme in HS biosynthesis, directing other modifications. We show that NDST isoforms have very different roles in HS biosynthesis. Inactivation of NDST1 affects HS biosynthesis in all tissues. In embryonic liver HS from NDST1-/- mice the N-sulfation was decresed with twothirds, while the absence of NDST2 did not affect HS structure. In the absence of NDST1 in the liver, however, NDST2 is active in HS N-sulfation. In a study of embryonic stem cells lacking both NDST1 and NDST2, no N-sulfate groups could be detected. 6-O-sulfate groups were, however, still present at half of its normal level. This was an unexpected finding since 6-O-sulfotransferases have been thought to be strictly dependent on N-sulfate groups for substrate recognition. By adapting an automated method for HS analysis to mammalian tissues, we could extend our analyses to more tissues and other transgene models. We also developed a protocol to create a sensitive “fingerprint” of HS structure. With these methods we could determine the individual HS structure of different mouse tissues.
7

Heparan Sulfate and Development : A Study of NDST Deficient Mice and Embryonic Stem Cells

Holmborn, Katarina January 2006 (has links)
Heparan sulfate (HS) proteoglycans consist of sulfated HS chains covalently bound to core proteins. They are ubiquitously expressed, on the cell surface and in the extracellular matrix, throughout the body. During biosynthesis the HS chain is modified to generate a highly variable pattern of sulfated residues, able to interact with a wide variety of ligands, such as growth factors, morphogens and extracellular matrix molecules. The presence of HS proteoglycans is crucial during various developmental processes as they are involved in generation of morphogen gradients and influence the function of several growth factor pathways essential for tissue assembly and differentiation. In this thesis the phenotypes of two mouse strains, deficient in different isoforms of the HS biosynthetic enzyme N-deacetylase/N-sulfotransferase (NDST) have been analyzed. In addition, NDST deficient embryonic stem (ES) cells have been analyzed with regard to HS structure and differentiation capacity. Mice deficient in NDST1 die peri-natally. The embryos display an overall low-sulfated HS and several developmental defects, with a lung phenotype as the predominant cause of death. Mice deficient in NDST2 lack sulfated heparin in connective tissue type mast cells while HS structure is unaltered. These results indicate that NDST1 is the isoform mainly responsible for HS biosynthesis during development. However, NDST1/2 deficient embryos do not survive beyond E5.5 and have a greatly disturbed morphology, suggesting that NDST2 has an essential role during early embryonic development. HS synthesized by NDST1/2 deficient ES cells had a total lack of N-sulfate groups while, interestingly, about half of the 6-O-sulfate groups remained. This result was unexpected since 6-O-sulfotransferases have been thought to be strictly dependent on N-sulfate groups for substrate recognition. Further characterization of the NDST1/2 deficient ES cells during in vitro differentiation demonstrated that the expression pattern of markers for all three germ layers was disturbed. In addition, it was demonstrated that NDST1 is not needed for mast cell development, that lack of NDST2 results in abnormal mast cells and that no mast cells is formed from NDST1/2 deficient ES cells.

Page generated in 0.0941 seconds