• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 18
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 166
  • 166
  • 96
  • 66
  • 45
  • 43
  • 32
  • 30
  • 24
  • 24
  • 21
  • 20
  • 20
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, structure and reactivity studies of dinuclear group 11 N-heterocyclic carbene complexes

Wyss, Chelsea Marie 07 January 2016 (has links)
This thesis describes the synthesis, structure and reactivity of singly bridged dinuclear Group 11 metal complexes, supported by N-heterocyclic carbene (NHC) ligands. These complexes include dinuclear copper(I) complexes that demonstrate three-center, two-electron bonding with short intermetallic distances. In the first part of this study, a hydride-bridged dicopper cation, {[(IDipp)Cu]2(μ-H)}+ BF4–, which adopts a bent arrangement about the hydride was isolated. It undergoes facile methanolysis, readily reacts with carbon dioxide to afford a (κ2-formate)-bridged dicopper species, and coordinates carbon monoxide reversibly to form a carbonyl adduct. The [(LCu)2H]+ cation also inserts phenylacetylene to afford a gem-dicopper vinyl cation, a rare example of the insertion of carbon-carbon multiple bonds into a copper hydride. The second part of this thesis describes the synthesis and structural characterization of the first boryl-bridged dicopper cation {[(SIDipp)Cu]2(μ-B(O2C6H4)}+ BF4–. The solid state structure shows a bent arrangement about the boryl with a short intermetallic distance of 2.4082(2) Å. The boryl-bridged dicopper cation deprotonates phenylacetylene to form a phenylacetylide dicopper complex. It also readily reacts with methanol to form the hydride-bridged dicopper cation. Density functional theory (DFT) calculations were applied to give further insight into the nature of the metal–boron bonds in comparison to the mononuclear analogue. The two electrons contributed by the bridging boryl are shared between the boron and the two copper centers in the [(LCu)2B]+ core. This three-center, two-electron bonding orbital is lower-lying in energy in comparison to the Cu−B σ-bonding molecular orbital in the mononuclear analogue, consistent with a less nucleophilic Cu–B bond. The NHC ligand also stabilizes an isoleptic series of dinuclear μ-fluoro cations of copper(I), silver(I), and gold(I). In these complexes, a single fluoride acts as the sole bridging ligand between the two group 11 metal centers of the form [(LM)2(μ-F)]+. All three cations are highly sensitive to adventitious moisture, readily forming the hydroxide-bridged dinuclear cations. The gold(I) complex is the most reactive. It activates the C-Cl bonds of CD2Cl2 and adds rapidly across an allene C=C bond to form an allylic C–F bond, and a vinyl anion bound asymmetrically to the two gold(I) centers.
2

Development of Cobalt and Nickel N-Heterocyclic Carbene Complexes for Cross-Coupling Reactions

Lazarus, Michael Evan 10 July 2020 (has links)
Cross-coupling, which relies on the use of transition metals, is among the most utilized chemical means of establishing carbon-carbon or carbon-heteteroatom bonds between appropriately functionalized sp, sp2, or sp3 centres. However, most cross-coupling reactions rely on the use of palladium to synthesize valuable synthetic targets. This is problematic for the chemical industry as palladium is limited in supply and expensive. Chemists have therefore sought to replace palladium with first-row transition metals (e.g., iron, cobalt and nickel) and recent reports on cobalt and nickel catalyzed cross-coupling reactions indicate that these metals can be used in this capacity. Unfortunately, protocols developed (so far) for these metals are unsuitable for the synthesis of targets with base-sensitive functional groups as they involve strongly basic reaction conditions. Research in this thesis aims to develop both cobalt and nickel pre-formed catalysts that will display high catalytic activity in mildly basic reaction conditions. Current methodologies for cobalt and nickel cross-coupling reactions use either phosphine ligands or NHC ligands of moderate steric bulk (IMes or IPr). Recent advancements in the development of Pd-PEPPSI catalysts have demonstrated that both pre-forming the catalyst and using larger NHC ligands (IPent, IPentCl, or IHept) are required for high catalytic activity in weakly basic conditions. Thus, it was hypothesized that the development of pre-formed cobalt and nickel NHC complexes analogous to their Pd counterparts would improve reactivity in Negishi, Suzuki-Miyaura, and Buchwald-Hartwig amination cross-coupling reactions. Co(IPent)Cl2(Pyr), Co(IPentCl)Cl2(Pyr), and Co2IPr2(OAc)4 were prepared, identified by X-ray crystallography, and evaluated in preliminary Negishi cross-coupling reactions. These complexes were found to be ineffective, but Co2IPr2(OAc)4 was found to be effective for Suzuki-Miyaura cross-coupling. A base screen was performed to enable the use of weak bases, however, the reaction only worked by pre-forming the boronate with n-BuLi, rendering the reaction conditions intolerant of base-sensitive functional groups. [Ni(IPr)]2(µ-Cl)2 , Ni(IPr)Cl(allyl), and Ni(IPent)Cl(allyl) complexes were synthesized and evaluated in Buchwald-Hartwig aminations. Several bases were examined for these reactions but only sodium tert-butoxide was found to be effective. The presence of TEMPO and BHT in these transformations proved deleterious suggesting the involvement of radical intermediates. Finally, stoichiometric reactions were performed to isolate intermediates in the catalytic cycle, supporting the formation of nickel(0).
3

A Stability Comparison and Antimicrobial Evaluation of Gold N-Heterocyclic Carbenes and Their Silver Precursors

Siciliano, Tammy J. 26 August 2008 (has links)
No description available.
4

Small molecule activation using electropositive metal N-heterocyclic carbene complexes

Turner, Zoe Rose January 2011 (has links)
The versatility of N-heterocyclic carbenes (NHCs) is demonstrated by numerous practical applications in homogeneous transition metal catalysis, organocatalysis and materials science. There remains a paucity of electropositive metal NHC complexes and so this chemistry is poorly developed with respect to that of the late transition metal and main group elements. This thesis describes the synthesis of new alkoxy-tethered NHC proligands, their use in the synthesis of reactive metal amide and metal alkyl complexes, and finally small molecule activation using these complexes. Chapter One introduces NHCs and discusses their use as supporting ligands for early transition metal and f-block complexes. Small molecule activation using organometallic complexes is examined alongside the use of electropositive metal NHC complexes in catalysis. Chapter Two contains the synthesis and characterisation of new alkoxy-tethered NHC proligands and a variety of electropositive MII (M = Mg and Zn), MIII (M = Y, Sc, Ce and U) and MIV (M = Ce and U) amide complexes. X-ray diffraction studies and a DFT study are used to probe the extent of covalency in the bonding of the MIV complexes. Chapter Three investigates the reactivity of the amide complexes prepared in Chapter Two. The MII complexes are shown to be initiators for the polymerisation of raclactide into biodegradable polymers. The MIII complexes are used to demonstrate additionelimination reactivity of polar substrates across the M-Ccarbene bond which allows the formation of new N-E (E = Si, Sn, P or B) bonds. Treatment of the UIII silylamide complex U(N{SiMe3}2)3 with CO results in the reductive coupling and homologation of CO to form an ynediolate core -OC≡CO- and the first example of subsequent reactivity of the ynediolate group. The MIV complexes are used to examine the potential for forming MIV cationic species and alkyl complexes. Chapter Four examines the synthesis of MIII (M = Ce and Sc) aminobenzyl complexes and MIII (M = Y, Sc and U) neosilyl and neopentyl alkyl complexes. The addition-elimination reactivity discussed in Chapter Three is extended to include C-E bond formation (E = Si, Sn, P, B, I or C). Chapter Five provides overall conclusions to the work presented within this thesis. Chapter Six gives experimental and characterising data for all complexes and reactions in this work.
5

NHCs in organocatalysis : azolium enolate generation and synthetic applications

Douglas, James J. January 2012 (has links)
This thesis details investigations into organocatalytic reactions promoted by N Heterocyclic Carbenes (NHCs) that proceed via an assumed azolium enolate intermediate. Initial research focused on the catalytic asymmetric synthesis of β-lactones via an NHC-catalysed formal [2+2] cycloaddition of alkylarylketenes and chloral. This process operated in good yield (typically >70%) and moderate diastereoselectivity (typically ~75:25 dr, anti:syn) for a range of alkylarylketenes. The enantioselectivity was consistently high for the major anti diastereomer (typically >80% ee) and minor syn diastereomer (typically >70% ee). Interestingly, when a ketene bearing a 2 substituent on the aryl ring, or one that included an α-branched alkyl group was used, an exclusive asymmetric chlorination pathway was accessed. This is, to the best of our knowledge, the first use of chloral as an electrophilic chlorination agent. This methodology was found to be applicable to a range of 2-arylsubstituted alkylarylketenes in good yield and enantioselectivity (typically >70% yield and up to 92% ee). The scope of this reaction with respect to the aldehyde moiety was then analysed with 2-nitrobenzaldehyde providing β-lactone products in excellent dr (up to 94:6 syn:anti) and with good yield and enantioselectivity (typically >60% yield and >80% ee). Importantly these β-lactone products were amenable to further derivatisation with transformation to β-amino- and β-hydroxy acids. Following the identification of an NHC-catalysed chlorination reaction using chloral, the development of a general procedure was undertaken. Following a wide screen of electrophilic chlorination sources, 2,3,4,5,6,6 hexachlorocyclohexa 2,4 dienone was identified as optimal, operating in excellent yield (up to 97%) but in moderate to poor levels of enantioselectivity (21−61% ee). Efforts to expand the practicality of azolium enolate processes focused on the use of α-aroyloxyaldehydes as bench stable mono-substituted ketene surrogates. A range of differentially substituted α-aroyloxyaldehydes allowed access to δ-lactones via the NHC-catalysed [4+2] cycloaddition between azolium enolates and β,γ unsaturated α ketoesters. Following initial optimisation the reaction proceeded in exquisite diastereo- and enantiocontrol (typically >95:5 dr and >99% ee).
6

Synthesis and reactivity of scandium N-heterocyclic carbene complexes

Marr, Isobel Helen January 2014 (has links)
Chapter one introduces N-heterocyclic carbenes (NHCs) and discusses their use as ligands for rare earth metal complexes, with particular emphasis upon compounds synthesised from 2009 until the present day. Chapter two details the synthesis and characterisation of the homoleptic scandium-NHC complex [Sc(L)3] (L = [OCMe2CH2(1-C{NCHCHNiPr})]). Reactions of [Sc(L)3] with boranes, CO2 and CS2 are described which exploit the relative lability of the Sc–Ccarbene bond and allow formation of [Sc(L)2(OCMe2CH2(1-B'C{NCHCHNiPr}))] (B' = 9-BBN, BPh3, B(C6F5)3, BH3), [Sc(OCMe2CH2(1-O2CC{NCHCHNiPr})3]n, [Sc(L)2(OCMe2CH2 (1-S2CC{NCHCHNiPr})] and [Sc(L)(OCMe2CH2(1-S2CC{NCHCHNiPr})2]2. The chapter also discusses the reactivity of [Sc(L)3] towards substrates containing acidic C–H and N–H bonds and substrates containing polar E–X bonds (where E = C, Si, B, P and X = Cl, I). Chapter three describes the synthesis and characterisation of the NHC substituted scandium benzyl complexes [Sc(Bn)2(L)]2 and [Sc(Bn)(L)2], and the attempted synthesis of NHC substituted scandium aminobenzyl complexes. The reactivity of [Sc(Bn)2(L)]2 with RX substrates (R = alkyl) is discussed in detail; depending on the nature of the alkyl group, these reactions can allow formation of R–Bn , the result of carbon-carbon coupling. The complex [Sc(Bn)(L)Cl]2 has been isolated from these reactions and is structurally characterised. The reactivity of [Sc(Bn)2(L)]2 towards C–H bonds is explored and attempts to prepare NHC substituted scandium hydrides are described. Comparisons of the relative stability and reactivity of [Sc(Bn)2(L)]2 and [Sc(Bn)3(thf)3] are drawn. Chapter four documents the synthesis and characterisation of [Sc(Odtbp)2(L)] (Odtbp = 2,6-di-tert-butylphenoxide), [Sc(Odtbp)(L)2], and the samarium analogue [Sm(Odtbp)(L)2]. The reactivity of these complexes towards various small molecules is described. The chapter also details attempts to prepare the cationic scandium complexes [Sc(L)2][Bort] (Bort = bis[3,3',5,5'-tetra-(tert-butyl)-2,2-diphenolato]borate) and [Sc(L)2][B(Ph)4]. Chapter five provides overall conclusions to the work presented in this thesis. Chapter six contains all experimental and characterising data for the complexes and reactions detailed in this work.
7

Design, Synthesis and Catalytic Activity of Di-<i>N</i>-Heterocyclic Carbene Complexes of Nickel and Palladium

Paulose, Tressia Alias Princy 05 August 2009
<i>N</i>-heterocyclic carbenes (NHC) have widely been used as spectator ligands in organometallic chemistry. Chelating bidentate di-<i>N-</i>heterocyclic carbenes (diNHC) provide additional entropic stability to their complexes relative to monodentate analogues. The steric and electronic environment around the metal centre can be fine-tuned by varying the substituents on the nitrogen atoms of the diNHC ligand. Synthesis and characterization of air and moisture stable bis(diimidazolylidene)nickel(II) complexes, [(diNHC)2Ni]2+, and their corresponding silver(I) and palladium(II) analogues are described.<p> Investigations into the catalytic potential of diNHC complexes of nickel as an alternative to palladium systems in carbon-carbon coupling reactions are discussed. In the Suzuki-Miyaura coupling reaction, the [(diNHC)2Ni]2+ complex was active for the coupling of aryl chlorides as well as aryl fluorides. The analogously synthesized Pd(II) complexes resulted in formation of (diNHC)PdCl2 species which were not active for the coupling of aryl fluorides. Transition-metal free coupling reactions were investigated and the results indicated that in the Mizoroki-Heck reaction, aryl iodides could be activated in the absence of nickel or palladium precatalysts when using Na2CO3 or NEt3 as base, while in the Suzuki-Miyaura reaction, aryl iodides and aryl bromides could be activated without any precatalyst when K3PO4 was used as base.<p> A general route into the synthesis of non-symmetrically substituted ligand precursors has been developed. Synthesis and characterization of non-symmetrically substituted ligand precursors, and their corresponding silver(I), palladium(II) and nickel(II) complexes are described. The activity of one of the non-symmetrically substituted (diNHC)Pd(II) complexes in the Suzuki-Miyaura coupling reaction of bulky substrates has been investigated. Non-symmetrically substituted diNHC ligand precursors with a hemi-labile pyridine arm have been synthesized and their corresponding Ni(II) and Pd(II) complexes are described.<p> Attempts to synthesize three-coordinate Pd(II) complexes using bulky â-diketiminato ligands are also discussed.
8

Synthesis of Chiral N-Heterocyclic Carbene Precursors and Key Intermediates for Catalytic Enantioselective Cyclizations of Conjugated Trienes

Wilkerson, Phillip D 29 March 2012 (has links)
Cocatalyzed reactions using Brønsted acids and chiral N-heterocyclic carbenes to yield highly enantioselective products have been reported recently in many journals. The development of new chiral N-heterocyclic carbenes is a competitive field among synthetic chemist. In a recent study we found that conjugated trienes could be cyclized using Brønsted acids and chiral N-heterocyclic carbenes. The synthesis of novel chiral N-heterocyclic carbene precursors, and the precursors to novel conjugated trienes are reported herein.
9

Design, Synthesis and Catalytic Activity of Di-<i>N</i>-Heterocyclic Carbene Complexes of Nickel and Palladium

Paulose, Tressia Alias Princy 05 August 2009 (has links)
<i>N</i>-heterocyclic carbenes (NHC) have widely been used as spectator ligands in organometallic chemistry. Chelating bidentate di-<i>N-</i>heterocyclic carbenes (diNHC) provide additional entropic stability to their complexes relative to monodentate analogues. The steric and electronic environment around the metal centre can be fine-tuned by varying the substituents on the nitrogen atoms of the diNHC ligand. Synthesis and characterization of air and moisture stable bis(diimidazolylidene)nickel(II) complexes, [(diNHC)2Ni]2+, and their corresponding silver(I) and palladium(II) analogues are described.<p> Investigations into the catalytic potential of diNHC complexes of nickel as an alternative to palladium systems in carbon-carbon coupling reactions are discussed. In the Suzuki-Miyaura coupling reaction, the [(diNHC)2Ni]2+ complex was active for the coupling of aryl chlorides as well as aryl fluorides. The analogously synthesized Pd(II) complexes resulted in formation of (diNHC)PdCl2 species which were not active for the coupling of aryl fluorides. Transition-metal free coupling reactions were investigated and the results indicated that in the Mizoroki-Heck reaction, aryl iodides could be activated in the absence of nickel or palladium precatalysts when using Na2CO3 or NEt3 as base, while in the Suzuki-Miyaura reaction, aryl iodides and aryl bromides could be activated without any precatalyst when K3PO4 was used as base.<p> A general route into the synthesis of non-symmetrically substituted ligand precursors has been developed. Synthesis and characterization of non-symmetrically substituted ligand precursors, and their corresponding silver(I), palladium(II) and nickel(II) complexes are described. The activity of one of the non-symmetrically substituted (diNHC)Pd(II) complexes in the Suzuki-Miyaura coupling reaction of bulky substrates has been investigated. Non-symmetrically substituted diNHC ligand precursors with a hemi-labile pyridine arm have been synthesized and their corresponding Ni(II) and Pd(II) complexes are described.<p> Attempts to synthesize three-coordinate Pd(II) complexes using bulky â-diketiminato ligands are also discussed.
10

Asymmetric hydrogenations of aryl alkenes using imidazol-2-ylidene iridium complexes

Cui, Xiuhua 29 August 2005 (has links)
A library of iridium complexes featuring oxazoline and imidazol-2-ylidene ligands were synthesized by reaction of a library of imidazoles with a second library of oxazoline iodides. These complexes were active catalysts for hydrogenations of aryl substituted monoenes. Tri- and 1,1-disubstituted alkenes were hydrogenated quantitatively with ee??s up to 99% at 1 atm hydrogen pressure. Catalyst, substrate, temperature and pressure effects were studied. The iridium complexes were also used for the kinetic study of hydrogenation of 2,3- diphenylbutadiene. This hydrogenation is a stepwise reaction: one double bond was hydrogenated first, then the second one. Both step hydrogenations were zero order in alkene. The consumption of 2,3-diphenylbutadiene was first order in catalyst, and probably first order in hydrogen pressure too. The enantioselectivity for the first step hydrogenation was low. There were match and mismatch catalyst-substrate relationships for the second step hydrogenation, and the enantioselectivities for this step were catalyst controlled. NMR studies indicated that the initiation of the reaction involved both hydrogen and alkene substrate. A competitive experiment was designed to explore the formation of meso-alkane at first step hydrogenation, and the results indicated that the alkane was formed predominantly via an associative mechanism. Four types of conjugate dienes were synthesized and hydrogenated. Different reactivities and selectivities were obtained for each type of dienes. In the best case, a diene was hydrogenated quantitatively with an excellent ent/meso ratio of 20:1.0 and 99% enantioselectivity. The scope, limitation and potential applications of the reactions were discussed. A selection of the dienes was hydrogenated with the Crabtree??s catalyst, for comparison, and the yields, conversions and diastereoselectivities were inferior to those from iridium-oxazoline-imidazol-2-ylidene catalysts.

Page generated in 0.0658 seconds