Spelling suggestions: "subject:"delinked proteoglycans"" "subject:"blinked proteoglycans""
1 |
Method development for identification of N-linked glycans by high performance anion exchange chromatography with pulsed amperometric detection and time of flight mass spectrometryAlm, Johanna January 2011 (has links)
In the biopharmaceutical industry, identification of glycans in a glycoprotein is a regulatory requirement and is a part of the characterization of the protein. Glycans are constructed of several monosaccharides linked together. N-linked glycans, which have been studied in this project, are attached to the nitrogen atom in asparagine. A method for separating N-linked glycans by high performance anion exchange chromatography had already been developed at the department. To develop a method for identification of the N-glycans by mass spectrometry, a desalting method on porous graphitic carbon (PGC) columns was used and optimized resulting in the eluents A (0,05% TFA in ACN:water 5:95 v/v) and B (0,05% TFA in ACN:water 50:50 v/v). Also the sample introduction on the mass spectrometer was optimized and resulted in a sensitive on-line liquid chromatography mass spectrometry (LC-MS) approach which gave mass spectrometric peaks with high signal to noise ratios and with high mass accuracy. The developed procedure was then successfully used on glycans cleaved from a glycoprotein separated by high performance anion exchange chromatography with pulsed amperometric detector.
|
2 |
Fragmentation of N-linked glycans with a matrix-assisted laser desorption/ionization ion trap time-of-flight mass spectrometer.Harvey, D.J., Martin, R.L., Jackson, K.A., Sutton, Chris W. January 2004 (has links)
No / N-Linked glycans were ionized from several matrices with a Shimadzu-Biotech AXIMA-QIT matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometer. [M+Na]+ ions were produced from all matrices and were accompanied by varying amounts of in-source fragmentation products. The least fragmentation was produced by 2,5-dihydroxybenzoic acid and the most by -cyano-4-hydroxycinnamic acid and 6-aza-2-thiothymine. Sialic acid loss was extensive but could be prevented by formation of methyl esters. Fragmentation produced typical low-energy-type spectra dominated by ions formed by glycosidic cleavages. MSn spectra (n = 3 and 4) were used to probe the pathways leading to the major diagnostic ions. Thus, for example, an ion that was formed by loss of the core GlcNAc residues and the 3-antenna was confirmed as being formed by a B/Y rather than a C/Z mechanism. The proposed structures of several cross-ring cleavage ions were confirmed and it was shown that MS3 spectra could be obtained from as little as 10 fmol of glycan
|
3 |
<b>ADVANCEMENTS IN AMBIENT MASS SPECTROMETRY IMAGING FOR ENHANCED SENSITIVITY AND SPECIFICITY OF COMPLEX BIOLOGICAL TISSUES</b>Miranda Renee Weigand (19179571) 19 July 2024 (has links)
<p dir="ltr">Mass spectrometry imaging (MSI) is a powerful technique for visualizing the distribution of molecules within biological samples. Advancements in MSI instrumentation and computational tools have enabled the impactful applications of this technique across various fields including clinical research, drug discovery, forensics, microbiology, and natural products. Nanospray desorption electrospray ionization (nano-DESI), an ambient localized liquid extraction ionization technique, has proven valuable to the MSI community. Nano-DESI has been used for imaging of various molecules in biological samples including drugs, metabolites, lipids, N-linked glycans, and proteins.</p><p dir="ltr">My research has been focused on expanding the sensitivity and specificity of nano-DESI for biomolecular imaging. One of the newly developed methods employs ammonium fluoride NH<sub>4</sub>F as a solvent additive to enhance the sensitivity of nano-DESI for the analysis of lipids in negative ionization mode. Secondly, methods were developed for the spatial mapping of isobaric and isomeric species in biological tissues by implementing nano-DESI MSI on a triple quadrupole (QqQ) mass spectrometer. This work used multiple reaction monitoring (MRM) mode of a QqQ with unit mass resolution to separate isobaric lipid species that require high mass resolving power and imaging of isomeric low-abundance species in tissue sections. Next, I demonstrate nano-DESI as a liquid extraction technique for imaging of N-linked glycans within biological tissue sections. Lastly, the spatial distribution of eicosanoids and specialized pro-resolving mediators (SPMs) in a mouse model for acetaminophen-induced liver injury (AILI) provides insights into the inflammation and resolution phases of AILI. Collectively, these developments have advanced the sensitivity, chemical specificity, and molecular coverage of nano-DESI for imaging of different classes of molecules in biological tissues.</p>
|
Page generated in 0.0339 seconds