• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nasal delivery of recombinant human growth hormone with pheroid technology / Dewald Steyn

Steyn, Johan Dewald January 2006 (has links)
Over the past couple of years there has been rapid progress in the development and design of safe and effective delivery systems for the administration of protein and peptide drugs. The effective delivery of these type of drugs are not always as simple as one may think, due to various inherent characteristics of these compounds. Due to the hydrophilic nature and molecular size of peptide and protein drugs, such as recombinant human growth hormone, they are poorly absorbed across mucosal epithelia, both transcellularly and paracellularly. This problem can be overcome by the inclusion of absorption enhancers in peptide and protein drug formulations but this is not necessarily the best method to follow. This investigation focussed specifically on the evaluation of the ability of the PheroidTM carrier system to transport recombinant human growth hormone across mucosal epithelia especially when administered via the nasal cavity. The PheroidTM delivery system is a patented system consisting of a unique submicron emulsion type formulation. The PheroidTM delivery system, based on PheroidTM technology, will for ease of reading be called Pheroid(s) only throughout the rest of this dissertation. The Pheroid carrier system is a unique microcolloidal drug delivery system. A Pheroid is a stable structure within a novel therapeutic system which can be manipulated in terms of morphology, structure, size and function. Pheroids consist mainly of plant and essential fatty acids and can entrap, transport and deliver pharmacologically active compounds and other useful substances to the desired site of action. The specific objectives of this study can be summarised as follows: a literature study on Pheroid technology; a literature study on chitosan and N-trimethyl chitosan chloride; a literature study on recombinant human growth hormone (somatropin); a literature study on nasal drug administration; formulation of a suitable Pheroid carrier; entrapment of somatropin in the Pheroid carrier, and in vivo evaluation of nasal absorption of somatropin in Sprague-Dawley rats. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
2

Nasal delivery of insulin with Pheroid technology / Tanile de Bruyn

De Bruyn, Tanile January 2006 (has links)
Approximately 350 million people worldwide suffer from diabetes mellitus (DM) and this number increases yearly. Since the discovery and clinical application of insulin in 1921, subcutaneous injections have been the standard treatment for DM. Because insulin is hydrophilic and has a high molecular weight and low bioavailability, this molecule is poorly absorbed if administered orally. The aim of this study is to evaluate nasal delivery systems for insulin, using Sprague Dawley rats as the nasal absorption model. Pheroid technology and N-trimethyl chitosan chloride (TMC) with different dosages of insulin (4, 8 and 12 IU/kg bodyweight insulin) was administered in the left nostril of the rat by using a micropipette. Pheroid technology is a patented (North-West University) carrier system consisting of a unique oil/water emulsion that actively transports drug actives through various physiological barriers. These formulations were administered nasally to rats in a volume of 100 p/kg bodyweight in different types of Pheroids (vesicles, with a size of 1.7 1 - 1.94 pm and microsponges, with a size of 5.7 1 - 8.25 pm). The systemic absorption of insulin was monitored by measuring arterial blood glucose levels over a period of 3 hours. The TMC formulation with 4 IU/kg insulin produced clinically relevant levels of insulin in the blood and as a result also the maximal hypoglycaemic effect. TMC is a quaternary derivative of chitosan and is able to enhance the absorption of various peptide drugs by opening tight junctions between epithelial cells. Pheroid formulations were also effective in lowering blood glucose levels but only at higher doses (8 and 12 IU/kg) of insulin. This study indicated that Pheroid rnicrosponges had a faster onset of action and a slightly better absorption of insulin when compared to Pheroid vesicles, but many more studies are needed in this field. Although the results of this study with absorption enhancers are encouraging, nasal insulin bioavailability is still very low, and the Pheroid formulations and long-term safety of nasal insulin therapy have yet to be investigated. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
3

Nasal drug delivery of calcitonin with pheroid technology / Jeanéne Celesté Kotzé

Kotzé, Jeanéne Celesté January 2005 (has links)
Advances in biotechnology and recombinant technologies have lead to the production of several classes of new drugs such as peptide and protein drugs. These compounds are mostly indicated for chronic use but their inherent characteristics such as size, polarity and stability prevent them from incorporation in novel dosage forms. The bioavailability of nearly all peptide drugs is very low due to poor absorption from the administration site. Several challenges confront the pharmaceutical scientist in developing effective and innovative dosage forms for these classes of drugs. A lot of attention has been given to the nasal route of drug administration for delivery of peptide drugs. The availability of several promising classes of absorption enhancers and new drug delivery technologies has also prompt scientists to develop new delivery systems for nasal administration of peptide drugs. It has been shown in recent years that N-trimethyl chitosan chloride (TMC), a quaternary derivative of chitosan, is effective in enhancing the absorption of several peptide drugs, both in the peroral route and in the nasal route of drug administration. Early indications are that new drug delivery technologies such as Pheroid technology will also be able to enhance peptide drug absorption in the nasal route. The aim of this study was to evaluate and compare the absorption enhancing abilities of TMC and Pheroid technology in the nasal delivery of calcitonin, a peptide hormone with low bioavailability. Pheroid vesicles and Pheroid microsponges were prepared and characterized for their morphology and size distribution. Calcitonin was entrapped into these vesicles and microsponges and TMC and TMO solutions (0.5 % w/v), containing calcitonin, was also prepared. These formulations were administered nasally to rats in a volume of 100 μl/kg body-weight to obtain a final concentration of 10 IU/kg body-weight of calcitonin. Plasma calcitonin and calcium levels were determined over a period of 3 hours. The results of this study clearly indicated that both Pheroid formulations and the TMC formulation increase the nasal absorption of calcitonin with a resulting decrease in plasma calcium levels, indicating an increased absorption of calcitonin. The highest increase in calcitonin absorption was obtained with the TMC formulation and this was explained by the difference in the mechanism of action in enhancing peptide absorption between TMC and Pheroid technology. It was concluded that Pheroid technology is also a potent system to enhance peptide drug delivery and that the exact mechanism of action should be investigated further. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2006.
4

Nasal delivery of insulin with Pheroid technology / Tanile de Bruyn

De Bruyn, Tanile January 2006 (has links)
Approximately 350 million people worldwide suffer from diabetes mellitus (DM) and this number increases yearly. Since the discovery and clinical application of insulin in 1921, subcutaneous injections have been the standard treatment for DM. Because insulin is hydrophilic and has a high molecular weight and low bioavailability, this molecule is poorly absorbed if administered orally. The aim of this study is to evaluate nasal delivery systems for insulin, using Sprague Dawley rats as the nasal absorption model. Pheroid technology and N-trimethyl chitosan chloride (TMC) with different dosages of insulin (4, 8 and 12 IU/kg bodyweight insulin) was administered in the left nostril of the rat by using a micropipette. Pheroid technology is a patented (North-West University) carrier system consisting of a unique oil/water emulsion that actively transports drug actives through various physiological barriers. These formulations were administered nasally to rats in a volume of 100 p/kg bodyweight in different types of Pheroids (vesicles, with a size of 1.7 1 - 1.94 pm and microsponges, with a size of 5.7 1 - 8.25 pm). The systemic absorption of insulin was monitored by measuring arterial blood glucose levels over a period of 3 hours. The TMC formulation with 4 IU/kg insulin produced clinically relevant levels of insulin in the blood and as a result also the maximal hypoglycaemic effect. TMC is a quaternary derivative of chitosan and is able to enhance the absorption of various peptide drugs by opening tight junctions between epithelial cells. Pheroid formulations were also effective in lowering blood glucose levels but only at higher doses (8 and 12 IU/kg) of insulin. This study indicated that Pheroid rnicrosponges had a faster onset of action and a slightly better absorption of insulin when compared to Pheroid vesicles, but many more studies are needed in this field. Although the results of this study with absorption enhancers are encouraging, nasal insulin bioavailability is still very low, and the Pheroid formulations and long-term safety of nasal insulin therapy have yet to be investigated. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
5

Nasal drug delivery of calcitonin with pheroid technology / Jeanéne Celesté Kotzé

Kotzé, Jeanéne Celesté January 2005 (has links)
Advances in biotechnology and recombinant technologies have lead to the production of several classes of new drugs such as peptide and protein drugs. These compounds are mostly indicated for chronic use but their inherent characteristics such as size, polarity and stability prevent them from incorporation in novel dosage forms. The bioavailability of nearly all peptide drugs is very low due to poor absorption from the administration site. Several challenges confront the pharmaceutical scientist in developing effective and innovative dosage forms for these classes of drugs. A lot of attention has been given to the nasal route of drug administration for delivery of peptide drugs. The availability of several promising classes of absorption enhancers and new drug delivery technologies has also prompt scientists to develop new delivery systems for nasal administration of peptide drugs. It has been shown in recent years that N-trimethyl chitosan chloride (TMC), a quaternary derivative of chitosan, is effective in enhancing the absorption of several peptide drugs, both in the peroral route and in the nasal route of drug administration. Early indications are that new drug delivery technologies such as Pheroid technology will also be able to enhance peptide drug absorption in the nasal route. The aim of this study was to evaluate and compare the absorption enhancing abilities of TMC and Pheroid technology in the nasal delivery of calcitonin, a peptide hormone with low bioavailability. Pheroid vesicles and Pheroid microsponges were prepared and characterized for their morphology and size distribution. Calcitonin was entrapped into these vesicles and microsponges and TMC and TMO solutions (0.5 % w/v), containing calcitonin, was also prepared. These formulations were administered nasally to rats in a volume of 100 μl/kg body-weight to obtain a final concentration of 10 IU/kg body-weight of calcitonin. Plasma calcitonin and calcium levels were determined over a period of 3 hours. The results of this study clearly indicated that both Pheroid formulations and the TMC formulation increase the nasal absorption of calcitonin with a resulting decrease in plasma calcium levels, indicating an increased absorption of calcitonin. The highest increase in calcitonin absorption was obtained with the TMC formulation and this was explained by the difference in the mechanism of action in enhancing peptide absorption between TMC and Pheroid technology. It was concluded that Pheroid technology is also a potent system to enhance peptide drug delivery and that the exact mechanism of action should be investigated further. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2006.
6

Nasal delivery of recombinant human growth hormone with pheroid technology / Dewald Steyn

Steyn, Johan Dewald January 2006 (has links)
Over the past couple of years there has been rapid progress in the development and design of safe and effective delivery systems for the administration of protein and peptide drugs. The effective delivery of these type of drugs are not always as simple as one may think, due to various inherent characteristics of these compounds. Due to the hydrophilic nature and molecular size of peptide and protein drugs, such as recombinant human growth hormone, they are poorly absorbed across mucosal epithelia, both transcellularly and paracellularly. This problem can be overcome by the inclusion of absorption enhancers in peptide and protein drug formulations but this is not necessarily the best method to follow. This investigation focussed specifically on the evaluation of the ability of the PheroidTM carrier system to transport recombinant human growth hormone across mucosal epithelia especially when administered via the nasal cavity. The PheroidTM delivery system is a patented system consisting of a unique submicron emulsion type formulation. The PheroidTM delivery system, based on PheroidTM technology, will for ease of reading be called Pheroid(s) only throughout the rest of this dissertation. The Pheroid carrier system is a unique microcolloidal drug delivery system. A Pheroid is a stable structure within a novel therapeutic system which can be manipulated in terms of morphology, structure, size and function. Pheroids consist mainly of plant and essential fatty acids and can entrap, transport and deliver pharmacologically active compounds and other useful substances to the desired site of action. The specific objectives of this study can be summarised as follows: a literature study on Pheroid technology; a literature study on chitosan and N-trimethyl chitosan chloride; a literature study on recombinant human growth hormone (somatropin); a literature study on nasal drug administration; formulation of a suitable Pheroid carrier; entrapment of somatropin in the Pheroid carrier, and in vivo evaluation of nasal absorption of somatropin in Sprague-Dawley rats. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
7

Chitosan derived formulations and EmzaloidTM technology for mucosal vaccination against diphtheria : oral efficacy in mice / Elaine van der Westhuizen

Van der Westhuizen, Elaine January 2004 (has links)
Vaccination plays a very important part in daily life. It is essential to get vaccinated at an early age. The conventional parented method used is not always effective and not cost efficient. It requires qualified personnel and sterile conditions for administration of the vaccines. The aim of this study was to investigate the effect of chitosan, N-trimethyl chitosan chloride (TMC) and Emzaloid™ particles on the local and systemic immune response of mice after oral vaccination with Diphtheria toxoid (DT). The different formulations used were chitosan microparticles (± 10 µm), chitosan nanoparticles (± 400 nm), TMC microparticles (± 5 µm), Emzaloid microparticles (± 4 µm) and Emzaloid nanoparticles (± 500 nm). All of these formulations proved to be very good delivery systems and can entrap large amounts of the antigen. Balb/c mice were used to determine the local and systemic immune response of these formulations. The mice were vaccinated orally on three consecutive days in week 1 and 3 with 40 Lf DT per week with a total volume of 300 µl. Blood samples were taken from the mice and analysed for a systemic immune response (IgG). The same mice were used to determine the local immune response (IgA). Faeces were collected from each mouse on day 1, 3, 4, 6, 14 and 20 for analysis. An enzyme-linked immunosorbent assay (ELISA) was used to determine IgG and IgA titers. It can be concluded that chitosan nanoparticles was the only formulation with a higher response than that of the currently used vaccine. Emzaloid nanoparticles showed no significant difference in response when compared to the currently used vaccine. All the other formulations showed a much smaller response than that of the conventional method of vaccination. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2005.
8

Chitosan derived formulations and EmzaloidTM technology for mucosal vaccination against diphtheria : oral efficacy in mice / Elaine van der Westhuizen

Van der Westhuizen, Elaine January 2004 (has links)
Vaccination plays a very important part in daily life. It is essential to get vaccinated at an early age. The conventional parented method used is not always effective and not cost efficient. It requires qualified personnel and sterile conditions for administration of the vaccines. The aim of this study was to investigate the effect of chitosan, N-trimethyl chitosan chloride (TMC) and Emzaloid™ particles on the local and systemic immune response of mice after oral vaccination with Diphtheria toxoid (DT). The different formulations used were chitosan microparticles (± 10 µm), chitosan nanoparticles (± 400 nm), TMC microparticles (± 5 µm), Emzaloid microparticles (± 4 µm) and Emzaloid nanoparticles (± 500 nm). All of these formulations proved to be very good delivery systems and can entrap large amounts of the antigen. Balb/c mice were used to determine the local and systemic immune response of these formulations. The mice were vaccinated orally on three consecutive days in week 1 and 3 with 40 Lf DT per week with a total volume of 300 µl. Blood samples were taken from the mice and analysed for a systemic immune response (IgG). The same mice were used to determine the local immune response (IgA). Faeces were collected from each mouse on day 1, 3, 4, 6, 14 and 20 for analysis. An enzyme-linked immunosorbent assay (ELISA) was used to determine IgG and IgA titers. It can be concluded that chitosan nanoparticles was the only formulation with a higher response than that of the currently used vaccine. Emzaloid nanoparticles showed no significant difference in response when compared to the currently used vaccine. All the other formulations showed a much smaller response than that of the conventional method of vaccination. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2005.
9

Chitosan derived formulations and EmzaloidTM technology for mucosal vaccination against diphtheria : nasal efficacy in mice / Erika M. Truter

Truter, Erika Mare January 2005 (has links)
Previous studies have demonstrated that chitosan and its derivative, N-trimethyl chitosan chloride (TMC) are effective and safe absorption enhancers to improve mucosal delivery of macromolecular drugs including vaccines. Furthermore, chitosan and TMC can easily form microparticles and nanoparticles, which have the ability to encapsulate large amounts of antigens. Emzaloid™ technology has proven in the past to be an effective delivery system for numerous drugs. Emzaloids can entrap, transport and deliver large amounts of drugs including vaccines. In this study, the ability of chitosan microparticles and nanoparticles, TMC microparticles as well as micrometer and nanometer range Emzaloids to enhance both the systemic and mucosal (local) immune response against diphtheria toxoid (DT) after nasal administration in mice was investigated. The above mentioned formulations were prepared and characterised according to size and morphology. DT was then associated to the chitosan microparticles and nanoparticles as well as TMC microparticles to determine the antigen loading and release. It was found that the loading efficacy of the formulations was 88.9 %, 27.74 % and 63.1 % respectively, and the loading capacity of the formulations was 25.7 %, 8.03 % and 18.3 %. DT loaded and unloaded (empty) chitosan microparticles and nanoparticles, TMC microparticles, micrometer and nanometer range Emzaloids as well as DT in phosphate buffered saline (PBS) were administered nasally to mice. Mice were also vaccinated subcutaneous with DT associated to alum as a positive control. All mice were vaccinated on three consecutive days in week 1 and boosted in week 3. Sera was analysed for anti- DT IgG and nasal lavages were analysed for anti-DT IgA using an enzyme linked imrnunosorbent assay (ELISA). In the study conducted to determine the systemic (IgG) and local (IgA) immune responses it was seen that DT associated to all the experimental formulations produced a systemic immune response. The said formulations produced a significantly higher systemic immune response when compared to the formulation of DT in PBS. Furthermore, the mice vaccinated with DT associated to the TMC formulations showed a much higher systemic immune response than the mice that were vaccinated subcutaneously with DT associated to alum, whereas the other formulations produced systemic immune responses that were comparable to that of DT associated to alum. It was also found that DT associated to the experimental formulations produced a local immune response, however only DT associated to TMC microparticles produced a consistent local immune response. It can be concluded from the in vivo experiments that the TMC formulations, moreover, the TMC microparticles is the most effective and promising formulation for the nasal delivery of vaccines. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2005.
10

Chitosan derived formulations and EmzaloidTM technology for mucosal vaccination against diphtheria : nasal efficacy in mice / Erika M. Truter

Truter, Erika Mare January 2005 (has links)
Previous studies have demonstrated that chitosan and its derivative, N-trimethyl chitosan chloride (TMC) are effective and safe absorption enhancers to improve mucosal delivery of macromolecular drugs including vaccines. Furthermore, chitosan and TMC can easily form microparticles and nanoparticles, which have the ability to encapsulate large amounts of antigens. Emzaloid™ technology has proven in the past to be an effective delivery system for numerous drugs. Emzaloids can entrap, transport and deliver large amounts of drugs including vaccines. In this study, the ability of chitosan microparticles and nanoparticles, TMC microparticles as well as micrometer and nanometer range Emzaloids to enhance both the systemic and mucosal (local) immune response against diphtheria toxoid (DT) after nasal administration in mice was investigated. The above mentioned formulations were prepared and characterised according to size and morphology. DT was then associated to the chitosan microparticles and nanoparticles as well as TMC microparticles to determine the antigen loading and release. It was found that the loading efficacy of the formulations was 88.9 %, 27.74 % and 63.1 % respectively, and the loading capacity of the formulations was 25.7 %, 8.03 % and 18.3 %. DT loaded and unloaded (empty) chitosan microparticles and nanoparticles, TMC microparticles, micrometer and nanometer range Emzaloids as well as DT in phosphate buffered saline (PBS) were administered nasally to mice. Mice were also vaccinated subcutaneous with DT associated to alum as a positive control. All mice were vaccinated on three consecutive days in week 1 and boosted in week 3. Sera was analysed for anti- DT IgG and nasal lavages were analysed for anti-DT IgA using an enzyme linked imrnunosorbent assay (ELISA). In the study conducted to determine the systemic (IgG) and local (IgA) immune responses it was seen that DT associated to all the experimental formulations produced a systemic immune response. The said formulations produced a significantly higher systemic immune response when compared to the formulation of DT in PBS. Furthermore, the mice vaccinated with DT associated to the TMC formulations showed a much higher systemic immune response than the mice that were vaccinated subcutaneously with DT associated to alum, whereas the other formulations produced systemic immune responses that were comparable to that of DT associated to alum. It was also found that DT associated to the experimental formulations produced a local immune response, however only DT associated to TMC microparticles produced a consistent local immune response. It can be concluded from the in vivo experiments that the TMC formulations, moreover, the TMC microparticles is the most effective and promising formulation for the nasal delivery of vaccines. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2005.

Page generated in 0.0736 seconds