• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the NAD⁺-malic Enzyme from Ascaris Suum

Landsperger, William J. 12 1900 (has links)
The NAD+-linked malic enzyme from Ascaris suum has been studied with regard to its kinetic and catalytic properties. Possible relationships between these properties and the physiological functioning of the malic enzyme were examined.
2

Fumarate Activation and Kinetic Solvent Isotope Effects as Probes of the NAD-Malic Enzyme Reaction

Lai, Chung-Jeng 12 1900 (has links)
The kinetic mechanism of activation of the NAD-malic enzyme by fumarate and the transition state structure for the oxidation malate for the NAD-malic enzyme reaction have been studied. Fumarate exerts its activating effect by decreasing the off-rate for malate from the E:Mg:malate and E:Mg:NAD:malate complexes. The activation by fumarate results in a decrease in K_imalate and an increase in V/K_malate by about 2-fold, while the maximum velocity remains constant. A discrimination exists between active and activator sites for the binding of dicarboxylic acids. Activation by fumarate is proposed to have physiologic importance in the parasite. The hydride transfer transition state for the NAD-malic enzyme reaction is concerted with respect to solvent isotope sensitive and hydride transfer steps. Two protons are involved in the solvent isotope sensitive step, one with a normal fractionation factor, another with an inverse fractionation factor. A structure for the transition state for hydride transfer in the NAD-malic enzyme reaction is proposed.
3

Pre-Steady State Kinetics of the NAD-Malic Enzyme from Ascaris suum in the Direction of Oxidative Decarboxylation of L-Malate

Rajapaksa, Ranjani, 1949- 12 1900 (has links)
Stopped-flow experiments in which the NAD-malic enzyme was preincubated with different reactants at near saturating substrate concentrations suggest a slow isomerization of the E:NAD:Mg complex. The lag is eliminated by preincubation with Mg˙² and malate suggesting that the formation of E:Mg:Malate either bypasses or speeds up the slow isomerization step. Circular dichroic spectral studies of the secondary structural changes of the native enzyme in the presence and absence of substrates supports the existence of conformational changes with NAD˙ and malate. Thus, a slow conformational change of the E:NAD:Mg complex is likely one of the rate-limiting steps in the pre-steady state.
4

Studies of Enzyme Mechanism Using Isotopic Probes

Chen, Cheau-Yun 08 1900 (has links)
The isotope partitioning studies of the Ascaris suum NAD-malic enzyme reaction were examined with five transitory complexes including E:NAD, E:NAD:Mg, E:malate, E:Mg:malate, and E:NAD:malate. Three productive complexes, E:NAD, E:NAD:Mg, and E:Mg:malate, were obtained, suggesting a steady-state random mechanism. Data for trapping with E:14C-NAD indicate a rapid equilibrium addition of Mg2+ prior to the addition of malate. Trapping with 14C-malate could only be obtained from the E:Mg2+:14C-malate complex, while no trapping from E:14C-malate was obtained under feasible experimental conditions. Most likely, E:malate is non-productive, as has been suggested from the kinetic analysis. The experiment with E:NAD:malate could not be carried out due to the turnover of trace amounts of malate dehydrogenase in the pulse solution. The equations for the isotope partitioning studies varying two substrates in the chase solution in an ordered terreactant reaction were derived, allowing a determination of the relative rates of substrate dissociation to the catalytic reaction for each of the productive transitory complexes. NAD and malate are released from the central complex at an identical rate, equal to the catalytic rate.
5

Alternate Substrates and Isotope Effects as a Probe of the Malic Enzyme Reaction

Gavva, Sandhya Reddy 08 1900 (has links)
Dissociation constants for alternate dirmcleotide substrates and competitive inhibitors suggest that the dinucleotide binding site of the Ascaris suum NAD-malic enzyme is hydrophobic in the vicinity of the nicotinamide ring. Changes in the divalent metal ion activator from Mg^2+ to Mn^2+ or Cd^2+ results in a decrease in the dinucleotide affinity and an increase in the affinity for malate. Primary deuterium and 13-C isotope effects obtained with the different metal ions suggest either a change in the transition state structure for the hydride transfer or decarboxylation steps or both. Deuterium isotope effects are finite whether reactants are maintained at saturating or limiting concentrations with all the metal ions and dinucleotide substrates used. With Cd^2+ as the divalent metal ion, inactivation of the enzyme occurs whether enzyme alone is present or is turning over. Upon inactivation only Cd^2+ ions are bound to the enzyme which becomes denatured. Modification of the enzyme to give an SCN-enzyme decreases the ability of Cd^2+ to cause inactivation. The modified enzyme generally exhibits increases in K_NAD and K_i_metai and decreases in V_max as the metal size increases from Mg^2+ to Mn^2+ or Cd^2+, indicative of crowding in the site. In all cases, affinity for malate greatly decreases, suggesting that malate does not bind optimally to the modified enzyme. For the native enzyme, primary deuterium isotope effects increase with a concomitant decrease in the 13-C effects when NAD is replaced by an alternate dinucleotide substrate different in redox potential. This suggests that when the alternate dinucleotides are used, a switch in the rate limitation of the chemical steps occurs with hydride transfer more rate limiting than decarboxylation. Deuteration of malate decreases the 13-C effect with NAD for the native enzyme, but an increase in 13-C effect is obtained with alternate dinucleotides. These suggest the presence of a secondary 13-C effect in the hydride transfer step. This phenomenon is also applicable to the modified enzyme with NAD as the substrate.

Page generated in 0.1842 seconds