• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Purification and Uptake Studies of Recombinant Human N-α-D-Acetylglucosaminidase from Sf9 Insect Cells

Morris, Geoffrey 27 August 2015 (has links)
Human α-N-acetylglucosaminidase (Naglu) is a lysosomal enzyme implicated in the rare metabolic storage disorder Mucopolysaccharidosis III type B (MPS IIIB). A deficiency in Naglu results in a buildup of heparan sulfate in lysosomes, which is most detrimental in the central nervous system, causing mental retardation and a shortened lifespan. Enzyme replacement therapy is currently ineffective in treating the neurological symptoms of MPS IIIB due to the inability of Naglu to cross the blood-brain barrier. This laboratory uses a Spodoptera frugiperda insect cell system to express recombinant Naglu conjugated to a synthetic protein transduction domain with the intent to allow Naglu to cross the blood-brain barrier and treat the neurological symptoms. In the present study, we aimed to purify a recombinant Naglu-PTD4 fusion protein in order to assess its capacity to cross cellular membranes. A three-step method involving multi-modal, hydrophobic interaction, and gel filtration chromatography was optimized to achieve pure Naglu-PTD4, in good yield. Cellular uptake by human MPSIIIB fibroblasts of Naglu-PTD4 was not detectable. It is hypothesized that additional amino acids, including a hexahistidine domain, following the PTD4 domain limited the fusion protein’s membrane transduction capacity. Future studies will focus on removing the additional amino acids and adjusting the purification method as necessary. The ultimate goal of this research is to develop a large-scale recombinant Naglu production protocol for enzyme replacement therapy of MPS IIIB. / Graduate
2

Structural and functional studies on secreted glycoside hydrolases produced by clostridium perfringens

Ficko-Blean, Elizabeth 21 April 2009 (has links)
Clostridium perfringens is a gram positive spore forming anaerobe and a causative agent of gas gangrene, necrotic enteritis (pig-bel) and food poisoning in humans and other animals. This organism secretes a battery of exotoxins during the course of infection as well as a variety of virulence factors which may help to potentiate the activities of the toxins. Among these virulence factors is the μ-toxin, a family 84 glycoside hydrolase which acts to degrade hyaluronan, a component of human connective tissue. C. perfringens has 53 open reading frames encoding glycoside hydrolases. About half of these glycoside hydrolases are predicted to be secreted. Among these are CpGH84C, a paralogue of the μ-toxin, and CpGH89. CpGH89 shares sequence similarity to the human α-N-acetylglucosaminidase, NAGLU, in which mutations can cause a devastating genetic disease called mucopolysaccharidosis IIIB. One striking feature of the secreted glycoside hydrolase enzymes of C. perfringens is their modularity, with modules predicted to be dedicated to catalysis, carbohydrate-binding, protein-protein interactions and cell wall attachment. The extent of the modularity is remarkable, with some enzymes containing up to eight ancillary modules. In order to help understand the role of carbohydrate-active enzymes produced by bacterial pathogens, this thesis will focus on the structure and function of the modular extracellular glycoside hydrolase enzymes secreted by the disease causing bacterium, C. perfringens. These structure function studies examine two family 32 CBMs (carbohydrate-binding modules), one from the μ-toxin and the other from CpGH84C. As well we examine the complete structure of CpGH84C in order to help further our understanding of the structure of carbohydrate-active enzymes as a whole. Finally, the catalytic module of CpGH89 is characterized and its relationship to the human NAGLU enzyme is discussed.
3

Purification of human recombinant Naglu from Sf9 cells and uptake studies with MPS IIIB fibroblasts

Ashmead, Rhea 15 July 2019 (has links)
Mucopolysaccharidosis IIIB (MPS IIIB) is a rare, metabolic disorder that results from a deficiency in the lysosomal hydrolase, α-N-acetylglucosaminidase (Naglu). Naglu is a housekeeping enzyme involved in the degradation pathway of heparan sulfate. A deficiency in active Naglu leads to an accumulation of heparan sulfate within the lysosome, initiating a pathological cascade within the cell. Patients with MPS IIIB experience progressive central nervous system degeneration and die within the first few decades of life. Presently, enzyme replacement therapy, which is a standard of care for other lysosomal storage disorders, is an ineffective treatment for MPS IIIB. This is due to impermeability of the blood-brain barrier (BBB) to exogenous recombinant enzymes. A promising approach to this therapeutic obstacle is protein transduction domains. Protein transduction domains have been shown to facilitate the delivery of active enzyme across the BBB in mice. Previously, our laboratory used Spodoptera frugiperda (Sf9) insect cell system to express human recombinant Naglu fused to a synthetic protein transduction domain (PTD4). The purpose was to use PTD4 to the facilitate the delivery of Naglu across biological membranes, including the blood-brain barrier. However, a missing stop codon following PTD4 limited its transducibility. The stop codon was re-introduced and the improved fusion enzyme, Naglu-PTD4X, was stably expressed in Sf9 cells. The overarching goal of this project is to create a large-scale production of human recombinant Naglu that has the potential to be used to treat the neuropathology of patients with MPS IIIB. This project used a three-step purification system to purify Naglu-PTD4X. Uptake of Naglu-PTD4X was assessed in MPS IIIB fibroblasts using a fluorogenic activity assay, immunoblotting, and immunocytochemistry. Our purification system was successful at purifying Naglu-PTD4X to homogeneity with a 26% yield and specific activity of 84,000 units/mg. An increase in Naglu activity was detected in MPS IIIB fibroblasts following incubation with Naglu-PTD4X. Future directions will focus on optimizing immunodetection and conducting BBB penetration studies in murine models. / Graduate / 2020-06-21
4

Expression of human α-N-Acetylglucosaminidase in Sf9 insect cells: effect of cryptic splice site removal and native secretion-signaling peptide addition.

Jantzen, Roni Rebecca 15 August 2011 (has links)
Human α-N-Acetylglucosaminidase (Naglu) is a lysosomal acid hydrolase implicated in tthe rare metabolic storage disorder known as mucopolysaccharidosis type IIIB (MPS IIIB; also Sanfilippo syndrome B). Absence of this enzyme results in cytotoxic accumulation of heparan sulphate in the central nervous system, causing mental retardation and a shortened lifespan. Enzyme replacement therapy is not currently effective to treat neurological symptoms due to the inability of exogenous Naglu to access the brain. This laboratory uses a Spodoptera frugiperda (Sf9) insect cell system to express Naglu fused to a synthetic protein transduction domain with the intent to facilitate delivery of Naglu across the blood-brain barrier. The project described herein may be broken down into three main sections. Firstly, the impact of two cryptic splice sites on Naglu expression levels was analyzed in both transiently expressing Sf9 cultures and stably selected cell lines. Secondly, the effectiveness of the native Naglu secretion-signaling peptide in the Sf9 system was examined. Finally, purification of a Naglu fusion protein from suspension culture medium was performed using hydrophobic interaction chromatographic techniques. The ultimate goal of this research is to develop an efficient system for economical, large-scale production of a human recombinant Naglu fusion protein that has the potential to be successfully used for enzyme replacement therapy to treat MPS IIIB. / Graduate

Page generated in 0.021 seconds