• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1388
  • 374
  • 174
  • 43
  • 33
  • 20
  • 16
  • 9
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 2624
  • 654
  • 570
  • 484
  • 375
  • 368
  • 307
  • 300
  • 226
  • 189
  • 181
  • 178
  • 161
  • 153
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Exchange bias in magnetically coupled CoO/Co bilayer measured with magnetic hysteresis loop and magnetotransport

Chon, David 04 May 2013 (has links)
<p> The temperature dependence of the exchange bias effect, a phenomenon due to the interfacial exchange coupling at the antiferromagnetic-ferromagnetic (AFM-FM) interface, is studied experimentally using CoO/Co bilayers with two different methods: magnetic hysteresis loop and magnetotransport. The exchange bias coupling in the CoO/Co gives rise to induce unidirectional anisotropy in the Co layer causing a shift in the magnetic hysteresis loops. The experimental results show that the exchange bias field decreases with increasing temperature and depends on the Co thicknesses. The exchange bias shift is inversely proportional to the ferromagnetic film thickness confirming that it is an interfacial effect. The large training effect in hysteresis loops indicates that the hysteresis loop method underestimates the unidirectional anisotropy induced by the exchange coupling. The exchange bias is also determined by measuring the anisotropic magnetoresistance (AMR). While previous measurements relied on two separate apparati for comparison, this experiment demonstrates that hysteresis loop measurements and AMR measurements can be performed in one system, the automated Physical Property Measurement System by Quantum Design. A greater magnitude in the exchange anisotropy energy is observed for measurements made with AMR compared to that of the hysteresis loop measurements.</p>
142

Synthesis and metrology of conducting carbon nanotube assemblies

Longson, Timothy Jay 08 May 2013 (has links)
<p> Since its discovery, the carbon nanotube (CNT) has been proposed as one of the ultimate materials for its electrical, thermal and mechanical properties due to its incredibly strong <i>sp</i><sup>2</sup> bonds, low defect density, and large aspect ratio. Many experimental results on individual CNTs have confirmed these outstanding theoretically predicted properties. However, scaling these properties to the macroscopic regime has proved to be challenging. This work focused on the synthesis and measurement of highly conducting, macroscopic, CNT assemblies. Scaling up the synthesis of vertically aligned multiwalled CNT (MWNT) forests was investigated through the development of a large, 100mm, wafer scale, cold wall chemical vapor deposition chamber. In addition to the synthesis, two distinct CNT assemblies have been investigated. A linear morphology where CNTs are strung in series for electrical transport (CNT wires) and a massively parallel 2D array of vertically aligned CNTs for Thermal Interface Material (TIM) applications. </p><p> Poymer-CNT wire composites have been fabricated by developing a coaxial CNT core-polymer shell electrospinning technique. The core-shell interactions in this system have been studied by way of Hansen's solubility parameters. The most well defined CNT core was achieved using a core solvent that is semi-immiscible with the shell solution, yet still a solvent of the shell polymer. Electrical characterization of the resulting CNT core has shown a two orders of magnitude increase in conductivity over traditional, homogeneously mixed, electrospun CNT wires. </p><p> A number of vertically aligned MWNT assemblies were studied for their thermal interface properties. Double-sided Silicon substrate (MWNT-Si-MWNT) TIM assemblies were characterized using a DC, 1D reference bar, thermal measurement technique. While attempts to control MWNT density via a micelle template technique produced only 'spaghetti like' CNTs, sputter deposited catalyst provided stark variations in array density. Relevant array morphologies such as density, height, and crystallinity were studied in conjunction with their thermal performance. A Euler buckling model was used to identify the transition between increasing and decreasing resistance with density over array height, these two regimes are explained by way of contact analysis. </p><p> Self catalyzing Fecralloy substrate MWNT TIMs were studied in a similar vein to the Silicon based assemblies. This substrate was investigated because of its malleability, ease of CNT synthesis and increased CNT adhesion. The growth behavior was studied with respect to the array morphologies, i.e. array height, density, crystallinity, and diameter, while the contact resistance was evaluated using a DC, 1D reference bar technique. The best performing samples were found to have a factor of two increase over their Si counterparts. Temperature dependent thermal measurements offer insight into the interfacial phonon conduction physics and are found to agree with other temperature dependent studies, suggesting inelastic scattering at the MWNT-Cu interface. Due to the challenges associated with deliberately controlling a single array morphology, a statistical approach was used for identifying the influences of the multivariate array morphology on contact resistance. Showing the strongest correlation with array height, following a <i>R ~ L</i><sup>&minus;0.5</sup>. Several models were investigated to help explain this behavior, although little insight is gained over the empirical relations. </p><p> To better characterize these MWNT TIM assemblies two experimental techniques were developed. A transient 3&omega; thermal measurement technique was adapted to characterize the thermal performance of CNT TIMs, offering insight into the limiting resistance in a mulilayer material stack. The MWNT-growth substrate interface was found to dominate in the Si samples while the MWNT-opposing substrate interface dominated in the Fecralloy samples. These measurements strongly supported the DC thermal measurements and the qualitative observations of substrate adhesion. Additionally, a new technique for observing nano sized contacts was established by viewing contact loading through an electron transparent membrane, imaged under an SEM. The contrast mechanism is explained by a voltage contrast phenomenon developed by trapped charges at the interface. The resolution limits have been studied by way of electron beam interactions and the use of Monte Carlo simulations, showing nanometer resolution with appropriate experimental conditions. The real MWNT contact area was found to be less than 1/100<i><sup>th</sup></i> the apparent contact area even at moderate pressures and the number of contacting CNTs is approximately 1/10<i><sup>th</sup></i> the total number of CNTs. These results confirm experimental measurement values for van der Waals adhesion strengths and thermal interface resistance.</p>
143

Probe immobilization strategies and device optimization for novel transistor-based DNA sensors

Fahrenkopf, Nicholas M. 31 May 2013 (has links)
<p> The research presented herein exploits the terminal phosphate group on single stranded DNA molecules for direct immobilization to surfaces utilized in semiconductor device fabrication with the end goal of transistor based DNA sensors. As a demonstration of the feasibility of this immobilization strategy DNA immobilization to a variety of surfaces was evaluated for usefulness in biosensor applications. It was determined that DNA can be directly immobilized to a variety of semiconductor surfaces through the terminal phosphate group. Further, this immobilization allows for the hybridization of the immobilized DNA to complementary target in solution. The immobilization of DNA to hafnium dioxide was particularly of interest due to its use in modern nanoelectronics manufacturing. The interactions between DNA and various forms of hafnium dioxide were thoroughly studied in order to understand and optimize the immobilization of DNA to hafnium dioxide for field effect transistor (FET) based DNA sensors. A secondary immobilization route of DNA to a subset of hafnium dioxide surfaces was identified and we have shown that this mechanism is through the nitrogenous bases of the probe molecule. Finally, a novel FET sensor was designed and developed which incorporated III-V materials and hafnium dioxide. The development of the sensor was carried out with the long term goal of determining if FET DNA sensors would have increased sensitivity if fabricated with: 1) the direct immobilization of probe DNA; 2) hafnium dioxide gate dielectric; and/or 3) III-V FET structure. Here, we demonstrate a proof-of-concept device that incorporates these three features and is capable of detecting DNA in solution, DNA immobilized to the surface, and DNA hybridization events.</p>
144

Synthetic analogue of voltage-gated channels

Nguyen, Gael Hoang 10 August 2013 (has links)
<p> Fluids in nanopores with diameters of &lt;100nm exhibit behavior that is not seen at micrometer dimensions and above, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. These properties originate from electrostatic interactions between charges on the nanopore surface and the fluid within the nanopore. The influence of these electrostatic effects is determined from a characteristic screening length for the system known as the Debye length. Typical nanopore systems have diameters on the scale of the Debye length and require the consideration of electrostatic effects which do not need to be considered in micrometer systems. Nanofluidic components may be designed by considering the effect of these surface interactions to control ionic transport and incorporate them in devices.In this study we present single conically shaped polymer nanopores with controlled chemistry of the pore walls and pore opening diameter between 5 nm and 30 nm. Two types of pores were examined. The first group of pores contained a junction between two zones with different surface charges. The first group consists of bipolar diodes, which have a two zones composed of positive and negative surface charges, and unipolar diodes, which have two zones composed of a charged zone and a neutral zone. We find that both bipolar and unipolar diodes show a substantial increase in asymmetrical behavior of current-voltage curves over a conical nanopore with a uniform surface charge. Further is it shown that while both diodes show an increase in current rectification, bipolar diodes in particular have superior rectification abilities. The second group of pores are modified by tethering single-stranded DNA molecules to the pore wall. We find that the DNA occludes the narrow opening of nanopores and that the this occlusion effect decreases with an increase in the concentration of the electrolyte. The results are explained by the persistence length of DNA. At low KCl concentrations (10 mM) the molecules are in an extended configuration, thereby blocking the opening and restricting the flow of ionic current to a greater extent than for high salt concentrations. Attaching DNA creates a system with varying opening diameters that can be used to control neutral and charged species.</p>
145

Embedded Categories: Three Studies on the Institutional Shaping of Categories and Category Effects

Wry, Tyler Earle Unknown Date
No description available.
146

Fabrication of large area resonator arrays using nanoimprint lithography

Janzen, Alexander Ryan Unknown Date
No description available.
147

Midgap states in gapped graphene induced by short-range impurities

Grinek, Stepan Unknown Date
No description available.
148

One-Dimensional nanostructured polymeric materials for solar cell applications

Mavundla, Sipho Enos. January 2010 (has links)
<p>This work entails the preparation of various polyanilines with different morphologies and their application in photovoltaic solar cells. Zinc oxide (ZnO) with one-dimensional and flower-like morphology was also prepared by microwave irradiation and used as electron acceptors in photovoltaics devices. The morphological, structural, spectroscopic and electrochemical characteristics of these materials were determined by scanning electron microscopy (SEM), X-Ray diffraction (XRD), Raman, Fourier-transformed infrared spectroscopy (FTIR), ultraviolet and visible spectroscopy (UV-Vis), photoluminescence(PL), thermal gravimetric analysis (TGA) and cyclic voltammetry (CV) experiments. Devices fabricated from these materials were characterized under simulated AM 1.5 at 800 mW.</p>
149

Synthesis and characterizations of nanostructured MnO2 electrodes for supercapacitors applications

Mothoa, Sello Simon January 2010 (has links)
<p>The objective of this research was to develop highly efficient and yet effective MnO2 electrode materials for supercapacitors applications. Most attention had focussed on MnO2 as a candidate for pseudo-capacitor, due to the low cost of the raw material and the fact that manganese is more environmental friendly than any other transition metal oxide system. The surface area and pore distribution of MnO2 can be controlled by adjusting the reaction time. The MnO2 synthesised under optimum conditions display high capacitance, and exhibit good cycle profile. This work investigates the ways in which different morphological structures and pore sizes can affect the effective capacitance. Various -MnO2 were successfully synthesised under low temperature conditions of 70 oC and hydrothermal conditions at 120 oC. The reaction time was varied from 1 to 6 hours to optimise the conditions. KMnO4 was reduced by MnCl.H2O under low temperature, whereas MnSO4.4H2O, (NH4)2S2O8 and (NH4)2SO4 were co-precipitated under hydrothermal conditions in a taflon autoclave to synthesise various -MnO2 nano-structures.</p>
150

Rf linearity in low dimensional nanowire mosfets

Razavieh, Ali 23 October 2014 (has links)
<p>ABSTRACT Razavieh, Ali. Ph.D., Purdue University, May 2014. RF Linearity in Low Dimensional Nanowire MOSFETs. Major Professors: Joerg Appenzeller and David Janes. Ever decreasing cost of electronics due to unique scaling potential of today's VLSI processes such as CMOS technology along with innovations in RF devices, circuits and architectures make wireless communication an un-detachable part of everyday's life. This rapid transition of communication systems toward wireless technologies over last couple of decades resulted in operation of numerous standards within a small frequency window. More traffic in adjacent frequency ranges imposes more constraints on the linearity of RF front-end stages, and increases the need for more effective linearization techniques. Long-established ways to improve linearity in DSM CMOS technology are focused on system level methods which require complex circuit design techniques due to challenges such as nonlinear output conductance, and mobility degradation especially when low supply voltage is a key factor. These constrains have turned more focus toward improvement of linearity at the device level in order to simplify the existing linearization techniques. This dissertation discusses the possibility of employing nanostructures particularly nanowires in order to achieve and improve RF linearity at the device level by making a connection between the electronic transport properties of nanowires and their circuit level RF characteristics (RF linearity). Focus of this work is mainly on transconductance (gm) linearity because of the following reasons: 1) due to good electrostatics, nanowire transistors show fine current saturation at very small supply voltages. Good current saturation minimizes the output conductance nonlinearities. 2) non-linearity due to the gate to source capacitances (Cgs) can also be ignored in today's operating frequencies due to small gate capacitance values. If three criteria: i) operation in the quantum capacitance limit (QCL), ii) one-dimensional (1-D) transport, and iii) operation in the ballistic transport regime are met at the same time, a MOSFET will exhibit an ideal linear Id-Vgs characteristics with a constant gm of which is independent of the choice of channel material when operated under high enough drain voltages. Unique scaling potential of nanowires in terms of body thickness, channel length, and oxide thickness makes nanowire transistors an excellent device structure of choice to operate in 1-D ballistic transport regime in the QCL. A set of guidelines is provided for material parameters and device dimensions for nanowire FETs, which meet the three criteria of i) 1-D transport ii) operation in the QCL iii) ballistic transport, and challenges and limitations of fulfilling any of the above transport conditions from materials point of view are discussed. This work also elaborates how a non-ideal device, one that approaches but does not perfectly fulfill criteria i) through iii), can be analyzed in terms of its linearity performance. In particular the potential of silicon based devices will be discussed in this context, through mixture of experiment and simulation. 1-D transport is successfully achieved in the lab. QCL is simulated through back calculation of the band movement of the transistors in on-state. Quasi-ballistic transport conditions can be achieved by cooling down the samples to 77K. Since, ballistic transport is challenging to achieve for practical channel lengths in today's leading semiconductor device technologies the effect of carrier back-scattering on RF linearity is explored through third order intercept point (IIP3) analysis. These findings show that for the devices which operate in the QCL, while 1-D sub-bands are involved in carrier transport, current linearity is directly related to the nature of the dominant scattering mechanism in the channel, and can be improved by proper choice of channel material in order to enforce a specific scattering mechanism to prevail in the channel. Usually, in semiconductors, the dominant scattering mechanism in the channel is the superposition of different mechanisms. Suitable choice of channel material and bias conditions can magnify the effect of a particular scattering mechanism to achieve higher linearity levels. The closing section of this thesis focuses on InAS due to its potential for high linearity since it has small effective mass and large mean-free-path.

Page generated in 0.0201 seconds