• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1392
  • 374
  • 174
  • 43
  • 33
  • 20
  • 16
  • 10
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 2629
  • 658
  • 573
  • 484
  • 378
  • 368
  • 307
  • 301
  • 226
  • 189
  • 182
  • 179
  • 161
  • 153
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Understanding Electrochemical Processing Parameters for The Development of Nanostructured Metal/Metal Oxide Electrocatalyst Materials

Wang, Ke 26 May 2023 (has links)
No description available.
382

Modeling the self-assembly of ordered nanoporous materials

Jin, Lin 01 January 2012 (has links)
Porous materials have long been a research interest due to their practical importance in traditional chemical industries such as catalysis and separation processes. The successful synthesis of porous materials requires further understanding of the fundamental physics that govern the formation of these materials. In this thesis, we apply molecular modeling methods and develop novel models to study the formation mechanism of ordered porous materials. The improved understanding provides an opportunity to rational control pore size, pore shape, surface reactivity and may lead to new design of tailor-made materials. To attain detailed structural evolution of silicate materials, an atomistic model with explicitly representation of silicon and oxygen atoms is developed. Our model is based on rigid tetrahedra (representing SiO4) occupying the sites of a body centered cubic (bcc) lattice. The model serves as the base model to study the formation of silica materials. We first carried out Monte Carlo simulations to describe the polymerization process of silica without template molecules starting from a solution of silicic acid in water at pH 2. We predicted Qn evolutions during silica polymerization and good agreement was found compared with experimental data, where Qn is the fraction of Si atoms with n bridging oxygens. The model captures the basic kinetics of silica polymerization and provides structural evolution information. Next we generalize the application of this atomic lattice model to materials with tetrahedral (T) and bridging (B) atoms and apply parallel tempering Monte Carlo methods to search for ground states. We show that the atomic lattice model can be applied to silica and related materials with a rich variety of structures including known chalcogenides, zeolite analogs, and layered materials. We find that whereas canonical Monte Carlo simulations of the model consistently produce the amorphous solids studied in our previous work, parallel tempering Monte Carlo gives rise to ordered nanoporous solids. The utility of parallel tempering highlights the existence of barriers between amorphous and crystalline phases of our model. The role of template molecules during synthesis of ordered mesoporous materials was investigated. Implemented surfactant lattice model of Larson, together with atomic tetrahedral model for silica, we successfully modeled the formation of surfactant-templated mesoporous silica (MCM-41), with explicit representation of silicic acid condensation and surfactant self-assembly. Lamellar and hexagonal mesophases form spontaneously at different synthesis conditions, consistent with published experimental observations. Under conditions where silica polymerization is negligible, reversible transformation between hexagonal and lamellar phases were observed by changing synthesis temperatures. Upon long-time simulation that allows condensation of silanol groups, the inorganic phases of mesoporous structures were found with thicker walls that are amorphous and lack of crystallinity. Compared with bulk amorphous silica, the wall-domain of mesoporous silicas are less ordered withlarger fractions of three- and four-membered rings and wider ring-size distributions. It is the first molecular simulation study of explicit representations of both silicic acid condensation and surfactant self-assembly.
383

Manipulation of magnetization states of ferromagnetic nanorings

Yang, Tianyu 01 January 2011 (has links)
This thesis discusses experimental research and theoretical analysis on exploring the physics and techniques of manipulation of magnetization states of ferromagnetic nanorings in both homogeneous and non-homogeneous applied magnetic field. Magnetization states and their switching processes are fundamental properties of magnetic systems. The ring shape is particularly interesting because of the existence of the closed-flux vortex state, which can be used to encode binary information. The understanding and control of the magnetization switching of ferromagnetic nanorings could lead to new designs of practical magnetic data storage devices. The work in this thesis is grouped into three main activities: theoretical analysis and micromagnetic simulation, fabrication techniques, and characterization of magnetization switching by applied magnetic field. Ferromagnetic rings with different geometric parameters were fabricated by electron beam lithography (EBL), electron beam evaporation and lift-off techniques. EBL patterning on double layer photo resist improved lithography and lift-off resolution. The experiments with applied homogeneous and non-homogeneous fields were able to manipulate the ferromagnetic nanorings through different magnetic configurations. The key accomplishment of this work is we experimentally achieved direct switching between two magnetic vortex states of opposite circulation of magnetization, by using an applied azimuthal (circular) Oersted magnetic field. Such field was generated by applying current through the center of a ring using a platinum atomic force microscopy tip. We used magnetic force microscope imaging to demonstrate the controllability of magnetic switching from onion state to vortex state and for the first time, direct switching between two opposite vortex states. Moreover, we investigated the switching mechanisms associated with nucleation, annihilation, and propagation of domain walls. The magnetic switching properties were found to be sensitive to the ring geometrical parameters. Smaller rings require less circular field to complete the switching than bigger rings. Asymmetric rings require less circular field to complete the switching than symmetric rings with the same dimensions. Theoretical analysis and micromagnetic simulations were conducted on symmetric and asymmetric nanorings, with the purpose of helping us better understand the physics behind the experimental results. Those systematic studies investigated the energy and stability of different magnetization states, the switching field required as a function of the ring geometric designs, as well as switching mechanism and the evolutions among different magnetic states, in both in-plane and azimuthal Oersted magnetic fields. We found the simulations results are in a good agreement with the characterization results.
384

Role of strongly interacting additives in tuning the structure and properties of polymer systems

Daga, Vikram Kumar 01 January 2011 (has links)
Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCPadditive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals with the incorporation of additives into photoresists for next generation extreme ultra violet (EUV) photolithography applications. The concept of hydrogen bonding between the additives and the polymeric photoresist was utilized to cause formation of a physical network that is expected to slow down the diffusion of photoacid leading to better photolithographic performance (25-30 nm resolution obtained).
385

Nanotechnology-based approaches towards modulating inflammation

Duarte Sanmiguel , Silvia M. January 2020 (has links)
No description available.
386

AN ULTRASENSITIVE BACTERIAL DETECTION PLATFORM FOR CULTURE-FREE DIAGNOSIS OF INFECTIONS

Shi, Xuyang 09 December 2022 (has links)
No description available.
387

Controlled Sideways Assemblies of Dynamic DNA Origami Nanodevices and Gold Nanoparticle - DNA Origami Composites

Huang, Kehao 28 October 2022 (has links)
No description available.
388

Nanoscale Mechanical Characterization of Graphene/Polymer Nanocomposites using Atomic Force Microscopy.

Cai, Minzhen 01 January 2013 (has links) (PDF)
Graphene materials, exhibiting outstanding mechanical properties, are excellent candidates as reinforcement in high-performance polymer nanocomposites. In this dissertation, advanced atomic force microscopy (AFM) techniques are applied to study the nanomechanics of graphene/polymer nanocomposites, specifically the graphene/polymer interfacial strength and the stress transfer at the interface.;Two novel methods to directly characterize the interfacial strength between individual graphene sheets and polymers using AFM are presented and applied to a series of polymers and graphene sheets. The interfacial strength of graphene/polymer varies greatly for different combinations. The strongest interaction is found between graphene oxide (GO) and polyvinyl alcohol (PVA), a strongly polar, water-based polymer. On the other hand, polystyrene, a non polar polymer, has the weakest interaction with GO. The interfacial bond strength is attributed to hydrogen bonding and physical adsorption.;Further, the stress transfer in GO/PVA nanocomposites is studied quantitatively by monitoring the strain in individual GO sheet inside the polymer via AFM and Raman spectroscopy. For the first time, the strains of individual GO sheets in nanocomposites are imaged and quantified as a function of the applied external strains. The matrix strain is directly transferred to GO sheets for strains up to 8%. at higher strain levels, the onset of the nanocomposite failure and a stick-slip behavior is observed. This study reveals that GO is superior to pure graphene as reinforcement in nanocomposites. These results also imply the potential to make a new generation of nanocomposites with exceptional high strength and toughness.;In the second part of this dissertation, AFM is used to study the structure of silk proteins and the morphology of spider silks. For the first time, shear-induced self-assembly of native silk fibroin is observed. The morphology of the Brown Recluse spider silk is investigated and a novel silk/GO nanocomposite is proposed.;Finally, the growth, capacitance and frequency response of vertically oriented graphene sheets prepared by radio frequency plasma-enhanced chemical vapor deposition and used in electric double layer capacitors (EDLC) are presented. These capacitors exhibit the highest frequency response observed, to date, for carbon based materials, providing EDLC suitable for AC filtering. The results also suggest mechanisms other than surface area are operative in the double layer charge storage, such as a stronger polarization from graphene edges and vacancies.
389

MOLECULAR ENGINEERING OF A SELF-ASSEMBLING NUCLEOBASE COATING WITH NANO-SCALE CONTROL

Kumar, Aryavarta M. S. 10 July 2007 (has links)
No description available.
390

Nanotechnology and its Medical Applications: Focused on Biosensors and Neuro-regeneration

Scacca, Caroline C. 23 April 2009 (has links)
No description available.

Page generated in 0.0416 seconds