1 |
Numerical Simulation of Hydrocarbon Fuel Dissolution and Biodegradation in GroundwaterMolson, John W.H. January 2000 (has links)
The behaviour of hydrocarbon fuels in contaminated groundwater systems is studied using a multicomponent reactive transport model. The simulated processes include residual NAPL dissolution, aerobic and anaerobic biodegradation with daughter-product transport, and transport of a reactive carrier with mixed equilibrium/kinetic sorption. The solution algorithm is based on a three-dimensional Galerkin finite element scheme with deformable brick elements and capacity for a free watertable search. Nonlinearities are handled through Picard iteration. Convergence is rapid for most applications and mass balance errors for all phases are minimal. The model is first applied to simulate a pilot scale diesel fuel dissolution experiment in which humic acid is used as a natural organic carrier to enhance dissolution and to promote biodegradation of the aqueous components. The pilot scale experiment is described by Lesage et al. (1995) and Van Stempvoort et al. (2000). The conceptual model includes 8 unique components dissolving from 500 mL of residual diesel fuel within a 3D saturated domain. Oxygen-limiting competitive aerobic biodegradation with a dynamic microbial population is also included. A mixed 2-site equilibrium/kinetic model for describing sorption of the carrier to the aquifer solids was adopted to reproduce the observed breakthrough of the humic acid and organic components. Most model parameters were obtained independently with minimal calibration. Batch sorption data were found to fit well at the pilot scale, however biodegradation and dissolution rates were not well known and had to be fitted. Simulations confirmed the observed 10-fold increase in effective solubility of trimethylnaphthalene, and increases on the order of 2-5 for methyl- and dimethylnaphthalene. The simulated plumes showed almost complete attenuation after 5 years, in excellent agreement with observed data. A sensitivity analysis showed the importance of carrier concentrations, binding coefficients, dissolution and biodegradation rates. Compared to a dissolution scenario assuming no carrier, the humic acid-enhanced dissolution case decreased the remediation time by a factor of about 5. The second application of the model involves simulating the effect of ethanol on the persistence of benzene in gasoline-impacted groundwater systems. The conceptual model includes a 4-component residual gasoline source which is dissolving at the watertable into a 3D aquifer. Comparisons are made between dissolved plumes from a gasoline spill and those from an otherwise equivalent gasohol spill. Simulations have shown that under some conditions, a 10% ethanol component in gasoline can extend the travel distance of a benzene plume by at least 150% relative to that from an equivalent ethanol-free gasoline spill. The increase is due to preferred consumption of oxygen by ethanol and a corresponding reduction in the biodegradation rate of benzene while the two plumes overlap. Because of differences in retardation however, the ethanol and benzene plumes gradually separate. The impact therefore becomes limited because oxygen rapidly disperses behind the ethanol plume and benzene degradation eventually resumes. A sensitivity analysis for two common spill scenarios showed that background oxygen concentrations, and benzene retardation had the most significant influence on benzene persistence. A continuous gasohol spill over 10 years was found to increase the benzene travel distance by over 120% and a pure ethanol spill into an existing gasoline plume increased benzene travel distance by 150% after 40 years. The results are highly relevant in light of the forthcoming ban of MTBE in California and its likely replacement by ethanol by the end of 2002.
|
2 |
Numerical Simulation of Hydrocarbon Fuel Dissolution and Biodegradation in GroundwaterMolson, John W.H. January 2000 (has links)
The behaviour of hydrocarbon fuels in contaminated groundwater systems is studied using a multicomponent reactive transport model. The simulated processes include residual NAPL dissolution, aerobic and anaerobic biodegradation with daughter-product transport, and transport of a reactive carrier with mixed equilibrium/kinetic sorption. The solution algorithm is based on a three-dimensional Galerkin finite element scheme with deformable brick elements and capacity for a free watertable search. Nonlinearities are handled through Picard iteration. Convergence is rapid for most applications and mass balance errors for all phases are minimal. The model is first applied to simulate a pilot scale diesel fuel dissolution experiment in which humic acid is used as a natural organic carrier to enhance dissolution and to promote biodegradation of the aqueous components. The pilot scale experiment is described by Lesage et al. (1995) and Van Stempvoort et al. (2000). The conceptual model includes 8 unique components dissolving from 500 mL of residual diesel fuel within a 3D saturated domain. Oxygen-limiting competitive aerobic biodegradation with a dynamic microbial population is also included. A mixed 2-site equilibrium/kinetic model for describing sorption of the carrier to the aquifer solids was adopted to reproduce the observed breakthrough of the humic acid and organic components. Most model parameters were obtained independently with minimal calibration. Batch sorption data were found to fit well at the pilot scale, however biodegradation and dissolution rates were not well known and had to be fitted. Simulations confirmed the observed 10-fold increase in effective solubility of trimethylnaphthalene, and increases on the order of 2-5 for methyl- and dimethylnaphthalene. The simulated plumes showed almost complete attenuation after 5 years, in excellent agreement with observed data. A sensitivity analysis showed the importance of carrier concentrations, binding coefficients, dissolution and biodegradation rates. Compared to a dissolution scenario assuming no carrier, the humic acid-enhanced dissolution case decreased the remediation time by a factor of about 5. The second application of the model involves simulating the effect of ethanol on the persistence of benzene in gasoline-impacted groundwater systems. The conceptual model includes a 4-component residual gasoline source which is dissolving at the watertable into a 3D aquifer. Comparisons are made between dissolved plumes from a gasoline spill and those from an otherwise equivalent gasohol spill. Simulations have shown that under some conditions, a 10% ethanol component in gasoline can extend the travel distance of a benzene plume by at least 150% relative to that from an equivalent ethanol-free gasoline spill. The increase is due to preferred consumption of oxygen by ethanol and a corresponding reduction in the biodegradation rate of benzene while the two plumes overlap. Because of differences in retardation however, the ethanol and benzene plumes gradually separate. The impact therefore becomes limited because oxygen rapidly disperses behind the ethanol plume and benzene degradation eventually resumes. A sensitivity analysis for two common spill scenarios showed that background oxygen concentrations, and benzene retardation had the most significant influence on benzene persistence. A continuous gasohol spill over 10 years was found to increase the benzene travel distance by over 120% and a pure ethanol spill into an existing gasoline plume increased benzene travel distance by 150% after 40 years. The results are highly relevant in light of the forthcoming ban of MTBE in California and its likely replacement by ethanol by the end of 2002.
|
3 |
Impact d’une phase bactérienne sur la dissolution d’un polluant résiduel en milieu poreux / Impact of a bacterial phase on the dissolving a residual polluant in porous mediaBahar, Tidjani Bahar 19 May 2016 (has links)
La contamination des ressources en eaux souterraines par une phase organique non miscible à l'eau couramment appelée NAPL (Non Aqueous Phase Liquid) constitue aujourd'hui un défi scientifique majeur compte tenu de la durée de vie d'un tel polluant. Bien que l'activité bactérienne (généralement présente sous forme de biofilm) joue un rôle crucial dans le devenir à long terme de ces effluents, peu d'études existent à l'heure actuelle sur son impact dans des conditions multiphasiques (i.e., à proximité de la source). En effet, dans la zone saturée, sous l'action des forces capillaires, le NAPL se retrouve souvent piégé, en effet, sous forme de «gouttelettes» au niveau des pores. Ce comportement spécifique au polluant modifie la dynamique du système biofilm/milieu poreux saturé et d'importantes questions restent encore ouvertes : accessibilité du polluant, modification de la tension interfaciale, production de biosurfactant, effet de toxicité (inhibition de la croissance bactérienne). Pour tenter de répondre à ces questions, nous avons adopté une approche aussi bien théorique qu'expérimentale. L'approche théorique porte sur le développement d'un modèle macroscopique décrivant le transport multiphasique en milieu poreux pour un système eau/NAPL/biofilm. Elle repose sur la méthode de prise de moyenne volumique, appliqué aux équations décrivant le couplage écoulement/transport à l'échelle du pore, permettant d'effectuer le changement d'échelle et dériver un modèle à deux équations. Le modèle est établit sous les hypothèses d'équilibre de masse local à l'interface fluide/biofilm et les contraintes associées à ces hypothèses ont étés définies. L'influence des caractéristiques microscopiques (arrangement des grains, fraction volumique du biofilm, distribution des blobs de NAPL, mouillabilité) sur les propriétés effectives du milieu (coefficient de dispersion, coefficient d'échange de masse) est discutée au travers des résultats issus des simulations. Ensuite, le modèle macroscopique a été comparé avec succès à la simulation numérique direct à l'échelle du pore pour la géométrie 2D complexe considérée. Quant à l'approche expérimentale, elle consiste à étudier le transport et la biodégradation du toluène en présence des bactéries Pseudomonas Putida F1 à l'aide d'un milieu poreux transparent 2D (micromodèle). Premièrement, nous avons étudié la dissolution du toluène résiduel sans bactéries et des courbes de dissolution du toluène ont été obtenues. Les résultats de dissolution du toluène en condition abiotique ont été comparés avec succès aux résultats du modèle théorique. Ensuite, l'étude expérimentale en micromodèle a porté sur la dissolution du toluène en condition biotique. Les résultats de ces études (courbes de dissolution et évolution de la saturation résiduelle) ont montré un impact significatif de la présence des bactéries sur les processus de dissolution par comparaison au cas abiotique. / Contamination of groundwater resources by an immiscible organic phase commonly called NAPL (Non Aqueous Phase Liquid) represents a major scientific challenge considering the residence time of such a pollutant. Although bacterial activity (usually in the form of biofilm) plays a crucial role in the long term fate of these effluents, very few works are focused on the study of such processes in multiphase conditions (oil/water/biofilm systems). The NAPL often gets trapped, in fact, under the action of capillary forces in the saturated zone in the form of «droplets» within the pores. This specific pollutant behavior changes the dynamics of biofilm /saturated porous medium system where important questions remain open: accessibility of the pollutant, changes in interfacial tension, biosurfactant production, toxicity effect (inhibition of bacterial growth). Modeling the transport of chemical species in the presence of bacteria is an extremely complex issue in terms of scale. We will use an experimental and theoretical approach to address these questions. In this thesis, we developed a macroscopic model describing multiphase transport in porous media for a water/NAPL/biofilm system. A volume averaging method has been applied here to the equations at the pore scale to make the upscaling and derive the model. This two-equation model is established under the assumptions of local mass equilibrium at the fluid/biofilm interface and the constraints associated with these assumptions were defined. The effect of microscopic features (arrangement of grains, volume fraction of the biofilm, distribution of NAPL blobs, wettability) on the effective properties of the media (dispersion coefficient, mass exchange coefficient) is discussed through some results from simulations. Subsequently, the macroscopic model has been successfully compared with the direct numerical simulation at pore scale for a 2D complex geometry. The experimental approach consists of studying transport and biodegradation of toluene in the presence of bacteria Pseudomonas Putida F1 using a flowcell. First, we studied the dissolution of toluene in abiotic conditions and toluene dissolution curves were obtained. The results of toluene dissolution in abiotic conditions were compared with success the results of the theoretical model. Finally, an experimental study in flowcell on the dissolution of toluene under biotic conditions was performed. The results of these studies (dissolution curve and evolution of toluene saturation) showed a significant impact of the presence of bacteria on the dissolution process compared to the abiotic case.
|
4 |
Étude numérique de la croissance microbienne en milieu poreux / Numerical study of biofilm growth in porous mediaBenioug, Marbe 09 September 2015 (has links)
L’évolution d’une phase microbienne au sein d’un milieu poreux est un processus complexe de par la prise en compte des effets de croissance (ou de mortalité) et d’étalement de la phase cellulaire. D’autres processus tels que l’arrachement d’une partie du biofilm ou l’attachement-détachement de cellules mobiles depuis la phase fluide peuvent aussi contribuer à la variation du volume de biofilm présent. Une meilleure compréhension des interactions mis en jeu entre les processus de croissance de biofilm, du transport de soluté et de l’écoulement et une modélisation rigoureuse de ce processus de croissance à l’échelle microscopique est un enjeu essentiel à une prédiction plus fine du devenir des polluants dans les sols. L’évolution temporelle d’un milieu poreux sous l’effet de l’activité biologique constitue toutefois à l’heure actuelle un défi scientifique majeur d’un point de vue de la modélisation numérique. Les variations locales de la géométrie du domaine (bio-obstruction des pores) induisent en effet une chenalisation de l’écoulement et du transport qui va évoluer au cours du temps. Si différentes méthodes numériques – lagrangiennes ou eulériennes – ont été développées (méthode de capture du front, méthode d’interface diffuse de type « Level Set » ou « Volume Of Fluid »), elles restent souvent peu adaptées à des modélisations 3D à l’échelle du pore (temps de calcul, remaillage parfois nécessaire, problème de gain ou de perte de masse). Nous combinons ici une méthode IBM (Immersed Boundary Method) à une méthode LBM (Lattice Boltzman Method) pour le calcul de l’écoulement en 3D tandis qu’une approche de type VOF (Volume of Fluid) ou par reconstruction d’interface couplée à une discrétisation en Volume Finis est utilisée pour le transport des espèces chimiques. L’intérêt ici de la méthode IB-LBM est de pouvoir bénéficier de la précision de la formulation Lattice- Boltzmann tout en travaillant sur un maillage fixe, un terme correcteur venant modifier la vitesse au voisinage des interfaces mobiles. Le modèle d’écoulement-transport en milieu poreux évolutif développé est ensuite couplé à un modèle d’automate cellulaire prenant en compte les processus d’attachement-détachement. Le modèle est comparé à des benchmarks numériques et utilisé pour étudier les différents régimes de croissance du biofilm en fonction des conditions hydrodynamiques. Dans le dernier chapitre, ce modèle est étendu à la prise en compte d’une phase non-miscible afin d’étudier l’impact des processus de biodégradation sur la dissolution d’une phase polluante piégé. On se limite aux conditions où le NAPL est à saturation résiduelle. L’influence de la production de biosurfactant sur la solubilité du polluant ainsi que la toxicité de celui-ci sur la cinétique de croissance des bactéries est prise en compte. Plusieurs résultats numériques sont présentés afin d’illustrer l’influence des différents paramètres hydrodynamiques sur la dissolution du NAPL. / Mathematical modeling of transport in porous media of organic chemical species in the presence of a bacterial population growing in the form of biofilms is an important area of research for environmental and industrial applications such as the treatment and the remediation of groundwater contaminated by organic pollutants. Biofilms, which are composed of bacteria and extracellular organic substances, grow on the pore-walls of the porous medium. Biodegradable organic solutes are converted into biomass or other organic compounds by the bacterial metabolism. This evolution of the microbial biomass phase within the porous medium is a complex process due mainly to growth (or decay) and spatial spreading of the cellular phase. Processes such as biofilm sloughing and attachment (or detachment) of cells from the fluid phase may also contribute to the biofilm volume variation. In this context, the aim of the thesis is to focus on the mechanisms that control the development of biofilms in porous media and its impact on the hydrodynamic properties of the porous matrix. The objective of this work is to model this pore-scale phenomenon of biofilm growth by integrating the various mechanisms which favor the bacterial development (bacterial proliferation, assimilation of nutrients to synthesize new cellular materials, attachment of cells) or, conversely, which are responsible for slowing down (e.g., detachment of cells, toxicity). An IB-LB model is developed for flow calculation and non-boundary conforming finite volume methods (volume of fluid and reconstruction methods) are used for reactive solute transport. A sophisticated cellular automaton model is developed to describe the spatial distribution of bacteria. Several numerical simulations have been performed on complex porous media and a quantitative diagram representing the transitions between the different biofilm growth patterns was proposed. Finally, the bioenhanced dissolution of NAPL in the presence of biofilms was simulated at the pore scale. The impact of biosurfactants and NAPL toxicity on bacterial growth has been investigated.
|
Page generated in 0.1057 seconds