• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conductive Nanocrystalline Cellulose Polymer Composite Film as a Novel Mediator in Biosensor Applications

Lee, Andrew Dong-Hyun 14 December 2011 (has links)
Recent biosensors using glucose oxidase enzyme to detect glucose (“blood sugar”) were made with intrinsic conducting polymers such as poly pyrrole (PPY) to mediate the reaction. PPY coated electrodes were difficult to employ via eletropolymerization because PPY is only soluble in solvents potentially damaging to enzymes. Nano crystalline cellulose – poly pyrrole (NCC-PPY) colloid circumvents this by forming natural, enzyme compatible, and hydrophilic films mechanically bound to electrodes using easy-to-disperse colloids. NCC-PPY was studied as mediator to investigate use in biosensor applications. Using NCC-PPY film casted on microfabricated interdigitated electrodes, a glucose biosensor with sensitivity factor of 20 was achieved. NCC-PPY showed enhanced catalysis with no enzyme inactivation and a total current of 2mA. Enhanced sensitivity was attributed to resistance changes of doped PPY, redox mediation, and compatibility of cellulose with enzyme.
2

Conductive Nanocrystalline Cellulose Polymer Composite Film as a Novel Mediator in Biosensor Applications

Lee, Andrew Dong-Hyun 14 December 2011 (has links)
Recent biosensors using glucose oxidase enzyme to detect glucose (“blood sugar”) were made with intrinsic conducting polymers such as poly pyrrole (PPY) to mediate the reaction. PPY coated electrodes were difficult to employ via eletropolymerization because PPY is only soluble in solvents potentially damaging to enzymes. Nano crystalline cellulose – poly pyrrole (NCC-PPY) colloid circumvents this by forming natural, enzyme compatible, and hydrophilic films mechanically bound to electrodes using easy-to-disperse colloids. NCC-PPY was studied as mediator to investigate use in biosensor applications. Using NCC-PPY film casted on microfabricated interdigitated electrodes, a glucose biosensor with sensitivity factor of 20 was achieved. NCC-PPY showed enhanced catalysis with no enzyme inactivation and a total current of 2mA. Enhanced sensitivity was attributed to resistance changes of doped PPY, redox mediation, and compatibility of cellulose with enzyme.

Page generated in 0.0225 seconds