• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study the functional region involves in targeting of KChIP1 to membrane

Liao, Yen-Shun 15 July 2008 (has links)
Potassium channel-interacting protein 1 (KChIP1), a Ca<sup>2+</sup> sensor protein, regulates the function of A-type Kv4 potassium channels and increases their cell surface expression. Myristoylation at the N-terminus of KChIP1 has been suggested to facilitate membrane-binding, but was not sufficient for stable membrane assaociation. The aim of the present study is to investigate whether EF-hand motifs of KChIP1 are crucial for membranal targeting in addition to the N-terminal myristoyl group, and how the membrane association of KChIP1 is influenced by lipid compositions. According to hydropathy profile, EF-hands 3 and 4 of KChIP1 showed highly hydrophobicity. After deleting EF-hands 3 and 4, the altered microenvironment of Trp residue and decreased hydrophobicity were found in truncated KChIP1, but it still maintained £\-helix structure. Furthermore, truncated KChIP1 exhibited lower lipid-binding ability, affecting intracellular membrane localization and was almost diminished underlying increasing membrane permeability by digitonin in cells, suggesting that intact EF-hands 3 and 4 may be related to the anchorage of KChIP1 on cellular membrane. KChIP1, but not mutant, specifically bound with phosphatidylserine by lipid binding assay and the FTIR spectra showed the change of £\-helix structure by binding lipid large unilamellar vesicles was dependent on phosphatidylserine. Either phosphatidylserine or potassium channels enhanced KChIP1 to form tetramer for targeting to phospholipids by using chemical cross-linking assay. Taken together, our data highly suggest that intact of EF-hands 3 and 4 should structurally and functionally involve in fulfilling the physiological activity of KChIP1.

Page generated in 0.0436 seconds