61 |
A theological and psychological reflection on the nature of religious conversion experienceMcCarthy, Marie. January 1977 (has links)
Thesis (M.A.)--Catholic Theological Union, 1977. / Includes bibliographical references (leaves 119-121).
|
62 |
The development of an educational model that will increase the ministry of the Newman Baptist ChurchAsh, James A. January 1986 (has links)
Thesis (D. Min.)--Ashland Theological Seminary, 1986. / Includes bibliographical references (leaves 141-146).
|
63 |
BCM International and Its Role in the Contemporary Wind BandJanuary 2016 (has links)
abstract: Formed in 1999, BCM International, comprised of composers Eric Whitacre, Jonathan Newman, Steven Bryant, and James (Jim) Bonney dedicated itself to publishing repertoire in the wind band medium. This project focuses on the work of these four composers, who, at the beginning of the “digital age,” joined together to create a new entrepreneurial and self-published entity. This paper aims to discuss their contribution to the wind band medium, thereby adding to the genre’s body of research.
Similarly to previous investigations of this sort, the author will: 1) offer a biographical sketch through the lens of each individual composer; 2) discuss the establishment of BCM International; 3) track the individual output for wind band of each of the four composers through performance data found in the College Band Directors National Association’s Report; and 4) discuss the composer reported influence of John Corigliano, their teacher, on their compositional process. / Dissertation/Thesis / Doctoral Dissertation Music 2016
|
64 |
Scoring Masculinity in Crisis: Thomas Newman’s Sonic World and the Disintegration of the Indiewood MaleSallustio, Edward John 12 December 2018 (has links)
No description available.
|
65 |
Important Influences on Newman's FaithSullivan, Mary Elaine 02 1900 (has links)
This study is designed primarily to show the important influences which shaped John Henry Newman's religious beliefs and his ultimate conversion to the Roman Catholic Church.
|
66 |
¿Qué significa ser niño hoy?Coloma Manrique, Carmen Rosa 10 April 2018 (has links)
Este artículo no presenta resumen.
|
67 |
Analytical Expressions for the Hawking Mass in slowly rotating Kerr and Kerr-Newman Space-timesBengtsson, Martin January 2007 (has links)
<p>Penrose's inequality which relates the total mass of a space-time containing a black hole with the area of the event horizon, is a yet unproven condition that is required for the cosmic censorship hypothesis. It is believed that the inequality could be proved by using properties of the Hawking mass. This thesis gives analytical expressions for the Hawking mass in slowly rotating Kerr and Kerr-Newman space-times. It is also shown that the expressions are monotonically increasing, a result that does not contradict Penrose's inequality.</p>
|
68 |
Analytical Expressions for the Hawking Mass in slowly rotating Kerr and Kerr-Newman Space-timesBengtsson, Martin January 2007 (has links)
Penrose's inequality which relates the total mass of a space-time containing a black hole with the area of the event horizon, is a yet unproven condition that is required for the cosmic censorship hypothesis. It is believed that the inequality could be proved by using properties of the Hawking mass. This thesis gives analytical expressions for the Hawking mass in slowly rotating Kerr and Kerr-Newman space-times. It is also shown that the expressions are monotonically increasing, a result that does not contradict Penrose's inequality.
|
69 |
Raréfaction dans les suites b-multiplicatives / The rarefaction phenomenon in b-multiplicative sequences.Aksenov, Alexandre 16 January 2014 (has links)
On étudie une sous-classe des suites b-multiplicatives rarefiées avec un pas de raréfaction p premier, et on trouve une structure asymptotique avec un exposant alphain]0,1[ et une fonction de raréfaction continue périodique. Cette structure vaut pour les suites qui contiennent des nombres complexes du disque unité (section 1.1), et aussi pour des systèmes de numération avec b chiffres successifs positifs et négatifs (section 1.2). Ce formalisme est analogue à celui décrit (pour le cas particuler de la suite de Thue-Morse) par Gelfond; Dekking; Goldstein, Kelly, Speer; Grabner; Drmota, Skalba et autres. Dans la deuxième partie, largement indépendante, on étudie la raréfaction dans les suites composées de -1,0 et +1. On se restreint davantage au cas où b engendre le groupe multiplicatif modulo p. Cette hypothèse est conjecturée (Artin) d'être vraie pour une infinité de nombres premiers. Les constantes qui apparaissent s'expriment alors comme polynômes symétriques des P(zeta^j) où P est un polynôme à coefficients entiers, zeta est une racine primitive p-ième de l'unité, $j$ parcourt les entiers de 1 à p-1 (ce lien est explicité dans la section 1.3). On définit une méthode pour étudier les valeurs de ces polynômes symétriques, basée sur la combinatoire, notamment sur le problème de comptage des solutions des congruences et des systèmes linéaires modulo p avec deux conditions supplémentaires: les résidus modulo p utilisés doivent être non nuls et différents deux à deux. L'importance est donnée à la différence entre les nombres de soluions de deux congruences qui ne diffèrent que du terme sans variable. Le cas des congruences de la forme $x_1+x_2+...+x_n=i mod p$ équivaut à un résultat connu. Le mémoire (section 2.2) lui donne une nouvelle preuve qui en fait une application originale de la formule d'inversion de Möbius dans le p.o.set des partitions d'un ensemble fini. Si au moins deux coefficients distincts sont présents, on peut classer les réponses associées à toutes les congruences possibles qui ont un ensemble fixe de coefficients (de taille d), dans un tableau qu'on va appeler un "simplexe de Pascal fini". Ce tableau est une fonction delta:N^d->Z restreinte aux points de somme des coordonnées inférieure à p (un simplexe), avec deux propriétés: l'équation récursive de Pascal y est vérifiée partout sauf les points où la somme des coefficients est multiple de p (qui seront appelés les "sources" et forment un sous-réseau de l'ensemble des points entiers), et les valeurs en-dehors du simplexe induites par l'équation sont nulles (c'est démontré, en réutilisant la méthode précédente, dans la section 2.3 et en partie 2.4). On décrit un algorithme (section 2.4) qui consiste en applications successives de l'équation dans un ordre précis, qui permet de trouver l'unique fonction delta qui vérifie les deux conditions. On applique ces résultats aux suites b-multiplicatives (dans la section 2.5). On montre aussi que le nombre de sources ne dépend que de la dimension du simplexe d et de la longueur de son côté p. On formule la conjecture (partie 2.6) qu'il serait le plus petit possible parmi les tableaux de forme d'un simplexe de la dimention fixe et taille fixe qui vérifient les mêmes conditions. On montre un premier résultat sur les systèmes de deux congruences linéaires (section 2.5.4), et on montre (section 1.4) un lien avec une méthode de Drmota et Skalba pour prouver l'absence de phénomène de Newman (dans un sens précis), décrit initialement pour la suite de Thue-Morse et tout p tel que b engendre le groupe multiplicatif modulo p, et généralisé (section 1.4) à la suite (-1)^{nombre de chiffres 2 dans l'écriture en base 3 de n} appelée "++-". Cette problématique est riche en problèmes d'algorithmique et de programmation. Différentes sections du mémoire sont illustrées dans l'Annexe. La plupart de ces figures sont inédites. / The primary object of study is a subclass of b-multiplicative sequences, p-rarefied which means that the subsequence of terms of index multiple of a prime number p is taken. The sums of their initial terms have an asymptotic structure described by an exponent alphain]0,1[ and a contnous periodic "rarefaction function". This structure is valid for sequences with complex values in the unit disc, in both cases of the usual numerating system (section 1.1) and one with b successive digits among which there are positive and negative (section 1.2). This formalism is analogous to the formalism for the Thue-Morse sequence in texts by Gelfond; Dekking; Goldstein, Kelly, Speer; Grabner; Drmota, Skalba and others. The second, largely independent, part concerns rarefaction in sequences with terms in -1,0 or 1. Most results concern the case where b is a generator of the multiplicative group modulo p. This condition has been conjectured to be valid for infinity of primes, by Artin. The constants which are important, can be written as symmetric polynomials of P(zeta^j) where zeta is a primitive p-th root of unity, P is a polynomial with integer coefficients and j runs through the numbers from 1 to p-1 (section 1.3). The text describes a combinatorics-based method to study the values of these symmetric polynomials, where the combinatorial problem is as follows. Count the solutions of a linear congruence or a system modulo p, which satisfy a condition: the values of variables must be different from each other and from zero. Importance is attached to the difference between the numbers of solutions of two congruences that differ only in the free term. For the congruences of the form $x_1+x_2+...+x_n=i mod p$ this problem reduces to a well-known result. The text (section 2.2) gives an original proof of it, using the Möbius inversion formula in the p.o.set of partitions of a finite set. If at least two distinct coefficients are present, we can fix a set of coefficients (of size d) and put the answers corresponding to all possible linear congruences into an array that will be called "finite Pascal's triangle". It is a function delta:N^d->Z restricted to inputs with the sum of coordinates smaler than p (a simplex), and it has two properties. A recursive equation similar to the equation of Pascal holds everywhere except the points where the sum of coefficients is a multiple of p (a sublattice of Z^d the points of which are called "sources"); the values induced by this equation beyond the simplex are zeroes (section 2.3 and part of 2.4). An algorithm that finds the unique function delta satisfying these condiditions is described (section 2.4). It consists in successive applications of the equation in a precise order. These results are then applied to the b-multiplicative sequences (section 2.5). We also prove that the number of sources depends only on the dimention d and the size p of the simplex. We conjecture (section 2.6) that this number is the smallest possible for all numerical arrays of the same dimention and size that satisfy the same conditions. A first result about the systems of two linear congruences is proved (section 2.5.4). It is shown how these systems are related to a method by Drmota and Skalba of proving the absence of Newman's phenomenon (in a precise sence) initially described for the Thue-Morse sequence and for a prime p such that 2 is a generator of the multiplicative group modulo p, then extended to the sequence (-1)^{number of digits 2 in the ternary extension of n} called "++-". These questions generate many algorithmic and programming problems. Several sections link to illustration situated in the Annexe. Most of these figures are published for the first time.
|
70 |
Trous noirs en supergravité N = 2 / Black holes in N = 2 supergravityErbin, Harold 23 September 2015 (has links)
La solution des équations d'Einstein–Maxwell décrivant le trou noir le plus général a été découverte par Plebański et Demiański en 1976. Cette thèse accomplit plusieurs étapes en vue d'intégrer une généralisation de cette solution en supergravité jaugée N = 2. Le contenu bosonique de cette dernière comprend la métrique assortie de champs de jauge et de deux types de champs scalaires (appelés scalaires-vecteurs et hyperscalaires); cela implique qu'il est beaucoup plus compliqué de trouver une solution générale et l'on doit se restreindre à des classes particulières de solutions ou bien utiliser des algorithmes pour générer des solutions.Dans la première partie de cette thèse nous approchons ce problème grâce à la première stratégie en nous restreignant aux solutions BPS.Dans un premier temps nous étudions les jaugeages abéliens qui impliquent les hyperscalaires afin de comprendre quelles sont les conditions nécessaires pour obtenir des vides N = 2 adS4 ainsi que des géométries de proche-horizon associées à des trous noirs statiques.Par la suite nous décrivons une solution générale et analytique pour des trous noirs (extrémaux) 1/4-BPS qui possèdent une masse, une charge de NUT, des charges dyoniques et des champs scalaires non-triviaux dans le contexte de la supergravité N = 2 jaugée à la Fayet–Iliopoulos.Dans la seconde partie nous obtenons une extension de l'algorithme de Janis-Newman afin de prendre en compte tous les champs bosoniques de spin inférieur à 2, les horizons topologiques et le cas des autres dimensions.Ainsi cela met à disposition tous les outils nécessaires pour appliquer cet algorithme à la supergravité (jaugée ou non). / The most general black hole solution of Einstein–Maxwell theory has been discovered by Plebański and Demiański in 1976.This thesis provides several steps towards generalizing this solution by embedding it into N = 2 gauged supergravity.The (bosonic fields of the) latter consists in the metric together with gauge fields and two kinds of scalar fields (vector scalars and hyperscalars); as a consequence finding a general solution is involved and one needs to focus on specific subclasses of solutions or to rely on solution generating algorithms. In the first part of the thesis we approach the problem using the first strategy: we restrict our attention to BPS solutions, relying on a symplectic covariant formalism. First we study the possible Abelian gaugings involving the hyperscalars in order to understand which are the necessary conditions for obtaining N = 2 adS4 vacua and near-horizon geometries associated to the asymptotics of static black holes.A preliminary step is to obtain covariant expressions for the Killing vectors of symmetric special quaternionic-Kähler manifolds. Then we describe a general analytic solutions for 1/4-BPS (extremal) black holes with mass, NUT, dyonic charges and running scalars in N = 2 Fayet–Iliopoulos gauged supergravity with a symmetric very special Kähler manifold. In the second part we provide an extension of the Janis–Newman algorithm to all bosonic fields with spin less than 2, to topological horizons and to other dimensions. This provides all the necessary tools for applying this solution generating algorithm to (un)gauged supergravity, and interesting connections with the N = 2 supergravity theory are unravelled.
|
Page generated in 0.0267 seconds