• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Increased Expression of microRNA-146a Decreases Myocardial Ischaemia/Reperfusion Injury

Wang, Xiaohui, Ha, Tuanzhu, Liu, Li, Zou, Jianghuan, Zhang, Xia, Kalbfleisch, John, Gao, Xiang, Williams, David, Li, Chuanfu 01 March 2013 (has links)
AimsWe have reported that either toll-like receptor 4 deficiency (TLR4 -/-) or TLR2 modulation protects against myocardial ischaemia/reperfusion (I/R) injury. The mechanisms involve attenuation of I/R-induced nuclear factor KappaB (NF-κB) activation. MicroRNA-146a (miR-146a) has been reported to target interleukin-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6), resulting in inhibiting NF-κB activation. This study examined the role of microRNA-146a in myocardial I/R injury.Methods and resultsWe constructed lentivirus expressing miR-146a (LmiR-146a). LmiR-146a was transfected into mouse hearts through the right common carotid artery. The lentivirus vector (LmiR-Con) served as vector control. Untransfected mice served as I/R control. Sham operation served as sham control. Seven days after transfection, the hearts were subjected to ischaemia (60 min) followed by reperfusion (4 h). Myocardial infarct size was analysed by triphenyltetrazolium chloride (TTC) staining. In separate experiments, the hearts were subjected to ischaemia (60 min) followed by reperfusion for up to 7 days. Cardiac function was measured by echocardiography prior to I/R, 3 and 7 days after myocardial I/R. LmiR-146a transfection significantly decreased I/R-induced myocardial infarct size by 55% and prevented I/R-induced decreases in ejection fraction (EF%) and fractional shortening (%FS). LmiR-146a transfection attenuated I/R-induced myocardial apoptosis and caspase-3/7 and-8 activities. LmiR-146a transfection suppresses IRAK1 and TRAF6 expression in the myocardium. In addition, transfection of LmiR-146a prevented I/R-induced NF-κB activation and inflammatory cytokine production.ConclusionsMicroRNA-146a protects the myocardium from I/R injury. The mechanisms may involve attenuation of NF-κB activation and inflammatory cytokine production by suppressing IRAK1 and TRAF6.
2

Increased Expression of microRNA-146a Decreases Myocardial Ischaemia/Reperfusion Injury

Wang, Xiaohui, Ha, Tuanzhu, Liu, Li, Zou, Jianghuan, Zhang, Xia, Kalbfleisch, John, Gao, Xiang, Williams, David, Li, Chuanfu 01 March 2013 (has links)
AimsWe have reported that either toll-like receptor 4 deficiency (TLR4 -/-) or TLR2 modulation protects against myocardial ischaemia/reperfusion (I/R) injury. The mechanisms involve attenuation of I/R-induced nuclear factor KappaB (NF-κB) activation. MicroRNA-146a (miR-146a) has been reported to target interleukin-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6), resulting in inhibiting NF-κB activation. This study examined the role of microRNA-146a in myocardial I/R injury.Methods and resultsWe constructed lentivirus expressing miR-146a (LmiR-146a). LmiR-146a was transfected into mouse hearts through the right common carotid artery. The lentivirus vector (LmiR-Con) served as vector control. Untransfected mice served as I/R control. Sham operation served as sham control. Seven days after transfection, the hearts were subjected to ischaemia (60 min) followed by reperfusion (4 h). Myocardial infarct size was analysed by triphenyltetrazolium chloride (TTC) staining. In separate experiments, the hearts were subjected to ischaemia (60 min) followed by reperfusion for up to 7 days. Cardiac function was measured by echocardiography prior to I/R, 3 and 7 days after myocardial I/R. LmiR-146a transfection significantly decreased I/R-induced myocardial infarct size by 55% and prevented I/R-induced decreases in ejection fraction (EF%) and fractional shortening (%FS). LmiR-146a transfection attenuated I/R-induced myocardial apoptosis and caspase-3/7 and-8 activities. LmiR-146a transfection suppresses IRAK1 and TRAF6 expression in the myocardium. In addition, transfection of LmiR-146a prevented I/R-induced NF-κB activation and inflammatory cytokine production.ConclusionsMicroRNA-146a protects the myocardium from I/R injury. The mechanisms may involve attenuation of NF-κB activation and inflammatory cytokine production by suppressing IRAK1 and TRAF6.
3

Enhanced Effects of Cigarette Smoke Extract on Inflammatory Cytokine Expression in IL-1β-Activated Human Mast Cells Were Inhibited by Baicalein via Regulation of the NF-κB Pathway

Chi, David S., Lin, Ta Chang, Hall, Kenton, Ha, Tuanzhu, Li, Chuanfu, Wu, Zong D., Soike, Thomas, Krishnaswamy, Guha 06 February 2012 (has links)
Background: Human mast cells are capable of a wide variety of inflammatory responses and play a vital role in the pathogenesis of inflammatory diseases such as allergy, asthma, and atherosclerosis. We have reported that cigarette smoke extract (CSE) significantly increased IL-6 and IL-8 production in IL-1β-activated human mast cell line (HMC-1). Baicalein (BAI) has anti-inflammatory properties and inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from HMC-1. The goal of the present study was to examine the effect of BAI on IL-6 and IL-8 production from CSE-treated and IL-1β-activated HMC-1.Methods: Main-stream (Ms) and Side-stream (Ss) cigarette smoke were collected onto fiber filters and extracted in RPMI-1640 medium. Two ml of HMC-1 at 1 × 10 6 cells/mL were cultured with CSE in the presence or absence of IL-1β (10 ng/mL) for 24 hrs. A group of HMC-1 cells stimulated with both IL-1β (10 ng/ml) and CSE was also treated with BAI. The expression of IL-6 and IL-8 was assessed by ELISA and RT-PCR. NF-κB activation was measured by electrophoretic mobility shift assay (EMSA) and IκBα degradation by Western blot.Results: Both Ms and Ss CSE significantly increased IL-6 and IL-8 production (p < 0.001) in IL-1β-activated HMC-1. CSE increased NF-κB activation and decreased cytoplasmic IκBα proteins in IL-1β-activated HMC-1. BAI (1.8 to 30 μM) significantly inhibited production of IL-6 and IL-8 in a dose-dependent manner in IL-1β-activated HMC-1 with the optimal inhibition concentration at 30 μM, which also significantly inhibited the enhancing effect of CSE on IL-6 and IL-8 production in IL-1β-activated HMC-1. BAI inhibited NF-κB activation and increased cytoplasmic IκBα proteins in CSE-treated and IL-1β-activated HMC-1.Conclusions: Our results showed that CSE significantly increased inflammatory cytokines IL-6 and IL-8 production in IL-1β-activated HMC-1. It may partially explain why cigarette smoke contributes to lung and cardiovascular diseases. BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation. This inhibitory effect of BAI on the expression of inflammatory cytokines induced by CSE suggests its usefulness in the development of novel anti-inflammatory therapies.

Page generated in 0.1069 seconds