• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic Wet Air Oxidation of Ammonia Solutions with Addition of Cu/La/Ce

Lin, Chia-Hua 15 July 2002 (has links)
ABSRACT This study was to investigate the removal efficiency and kinetics in oxidation of ammonia solutions (NH3-N) in ranging from 400 mg/L to 1000 mg/L by adding Cu/La/Ce catalyst in process of Wet Air Oxidation (denoted by WAO). All experiments were conducted in semi-batch and continuous reactors in series. The major parameters included temperature, pressure, concentration and pH. In the semi-batch type of WAO experiments, the major parameters were performed at the following conditions: an initial concentration NH3-N of 400 mg/L, temperatures ranging from 423 K to 503 K, a total pressure of 4.0 Mpa, and a pH of 12.0. A removal efficiency of 32.7%was obtained in WAO process at 503 K for180 min, but it could be significantly promote to 95.1% after adding a catalyst of molar ratio 7:2:1.The kinetics of WAO with this catalyst in oxidation of NH3-N solutions, using a test of half-life, was developed nearly to a zero order. The reaction constants were 10.12 KJ/mol, 9.12 KJ/mol, and 6.57 KJ/mol at 503 K, 473 K and 423 K. In the continuous type of WAO experiments, the major parameters were performed at the following conditions: an initial concentration NH3-N of 400 mg/L, a temperature of 503 K, a total pressure of 2.0 Mpa, a pH of 12.0 and a liquid space velocity of 4.5 hr-1 (averagelyresidence time 14 min) . A removal efficiency of NH3-N of 6.5 % only was achieved in WAO process for a space velocity of 4.5 hr-1 (averagely residence time 14 min) , but after adding a catalyst of molar ratio 7:2:1 it increased to 72.3 % for a same residence time and a better efficiency of above 91 % was found for 1.5 hr-1 (averagely residence time 40 min) . For increasing the initial concentration of NH3-N into 600 mg/L, 800 mg/L, and 1000 mg/L the removal efficiency of NH3-N decreased with 85 %,75 % and 69 % for 1.5 hr-1 . Thus, the initial concentration of NH3-N in influent inhibits the removal efficiency in the oxidation process. The higher initial concentration the lower removal efficiency.

Page generated in 0.0231 seconds