1 |
The Removal Of Motion Artifacts From Non-invasive Blood Pressure MeasurementsThakkar, Paresh 01 January 2004 (has links)
Modern Automatic Blood Pressure Measurement Techniques are based on measuring the cuff pressure and on sensing the pulsatile amplitude variations. These measurements are very sensitive to motion of the patient or the surroundings where the patient is. The slightest unexpected movements could offset the readings of the automatic Blood Pressure meter by a large amount or render the readings totally meaningless. Every effort must be taken to avoid subjecting the body of the patient or the patient's surroundings to motion for obtaining a reliable reading. But there are situations in which we need Blood Pressure Measurements with the patient or his surroundings in motion; for instance in an ambulance while a patient is being transported to a hospital. In this thesis, we present a technique to reduce the effect of motion artifact from Blood Pressure measurements. We digitize the blood pressure waveform and use Digital Signal Processing Techniques to process the corrupted waveform. We use the differences in frequency spectra of the Blood Pressure signal and motion artifact noise to remove the motion artifact noise. The motion artifact noise spectrum is not very well defined, since it may consist of many different frequency components depending on the kind of motion. The Blood Pressure signal is more or less a periodic signal. That translates to periodicity in the frequency domain. Hence, we designed a digital filter that could take advantage of the periodic nature of the Blood Pressure Signal waveform. The filter is shaped like a comb with periodic peaks around the signal frequency components. Further processing of the filtered signal: baseline restoration and level shifting help us to further reduce the noise corruption.
|
2 |
IDENTIFICATION OF PROTEIN PARTNERS FOR NIBP, A NOVEL NIK-AND IKKB-BINDING PROTEIN THROUGH EXPERIMENTAL, COMPUTATIONAL AND BIOINFORMATICS TECHNIQUESAdhikari, Sombudha January 2013 (has links)
NIBP is a prototype member of a novel protein family. It forms a novel subcomplex of NIK-NIBP-IKKB and enhances cytokine-induced IKKB-mediated NFKB activation. It is also named TRAPPC9 as a key member of trafficking particle protein (TRAPP) complex II, which is essential in trans-Golgi networking (TGN). The signaling pathways and molecular mechanisms for NIBP actions remain largely unknown. The aim of this research is to identify potential proteins interacting with NIBP, resulting in the regulation of NFKB signaling pathways and other unknown signaling pathways. At the laboratory of Dr. Wenhui Hu in the Department of Neuroscience, Temple University, sixteen partner proteins were experimentally identified that potentially bind to NIBP. NIBP is a novel protein with no entry in the Protein Data Bank. From a computational and bioinformatics standpoint, we use prediction of secondary structure and protein disorder as well as homology-based structural modeling approaches to create a hypothesis on protein-protein interaction between NIBP and the partner proteins. Structurally, NIBP contains three distinct regions. The first region, consisting of 200 amino acids, forms a hybrid helix and beta sheet-based domain possibly similar to Sybindin domain. The second region comprised of approximately 310 residues, forms a tetratrico peptide repeat (TPR) zone. The third region is a 675 residue long all beta sheet and loops zone with as many as 35 strands and only 2 helices, shared by Gryzun-domain containing proteins. It is likely to form two or three beta sheet sandwiches. The TPR regions of many proteins tend to bind to the peptides from disordered regions of other proteins. Many of the 16 potential binding proteins have high levels of disorder. These data suggest that the TPR region in NIBP most likely binds with many of these 16 proteins through peptides and other domains. It is also possible that the Sybindin-like domain and the Gryzun-like domain containing beta sheet sandwiches bind to some of these proteins. / Bioengineering
|
Page generated in 0.0272 seconds