• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tuning the thermal conductivity of polycrystalline films via multiscale structural defects and strain / Modulation de la conductivité thermique de couches minces polycristallines par défauts structuraux multi-échelle et par déformation

Jaramillo Fernandez, Juliana 13 May 2015 (has links)
La compréhension et le contrôle de la conductivité thermique des couches minces polycristallines est fondamentale pour améliorer la performance et la fiabilité des dispositifs micro- et optoélectroniques. Toutefois, une description et un contrôle précis de la performance thermique de ces matériaux bidimensionnels restent une tâche difficile en raison de leur anisotropie et structure hétérogène. En effet, les couches minces obtenues par diverses techniques et avec une large gamme de paramètres de dépôt, sont composées de petites cristallites à l'interface avec le substrat, qui coalescent et évoluent vers une structure colonnaire à proximité de la surface extérieure du film. Ces grains,ainsi que d'autres défauts cristallographiques, tels que les impuretés d'oxygène,augmentent les processus de dispersion diffuse des porteurs d'énergie dans les matériaux, ce qui en conséquence, réduit considérablement leur conductivité thermique. La caractérisation thermique expérimentale, la description théorique et la modulation contrôlée des propriétés thermiques de ces matériauxs ont, par conséquent, indispensables.Cette thèse est consacrée à l'étude de la conductivité thermique des couches polycristallines présentant une non-homogénéité structurelle et elle a pour but d'explorer la possibilité de moduler le transfert de chaleur à travers ces structures bidimensionnelles. Le nitrure d'aluminium a été sélectionné pour cette étude du fait de ses propriétés thermiques et piézoélectriques, particulièrement intéressantes pour des nouvelles applications technologiques. Réalisées par pulvérisation cathodique magnétron, des monocouches et multicouches d'AlN hautement texturées sur des substrats de silicium monocristallin ont été obtenues.Leur microstructure et distribution d'orientations cristallographiques le long de la normale à la surface, ont été caractérisées expérimentalement pour déterminer,avec précision, l'évolution de la structure et de la taille des grains.L'impact de l'oxydation locale et l'évolution de la morphologie de grains sur la conductivité thermique transversale a été étudiée par la méthode 3W différentielle.La dispersion diffuse des phonons due aux défauts liés à la présence d'atomes d'oxygène, localisés à l'interface entre deux couches d'AlN, a été étudiée par des mesures thermiques sur la configuration multicouche.Les caractéristiques structurelles des couches polycristallines ont été corrélées avec les propriétés thermiques à partir d'un modèle théorique, qui tient compte de la répartition et de la géométrie des grains, et considère les films comme un ensemble en série de trois zones, composées de grains parallélépipédiques. Les résultats de conductivité thermique obtenus par la mesure des monocouches et multicouches polycristallines d'AlN sont bien prédits par le modèle développé,avec une différence inférieure à 10%. Une description physique détaillée des phénomènes de dispersion diffuse à l'interface avec le substrat, aux joints de grains, et aux défauts liés à l'oxygène, en fonction de l'hétérogénéité structurelle caractéristique, a été réalisée en comparant les résultats expérimentaux aux prédictions théoriques. Enfin, pour explorer la modulation dynamique du transfert de chaleur, l'influence de la déformation du réseau cristallin, causée par des contraintes mécaniques, sur la conductivité thermique des monocouches et multicouches d'AlN, a été étudiée en utilisant une nouvelle approche expérimentale qui couple un système de flexion 4-points avec la méthode 3W. / The understanding and control of the thermal conductivity of nano and microscale polycrystalline thin films is of fundamental importance for enhancing the performance and reliability of micro- and optoelectronic devices. However, the accurate description and control of the thermal performance of these bidimensional materials remain a difficult task due to their anisotropic and heterogeneous structure. Indeed, thin films obtained with a large number of deposition techniques and parameters, are composed of small crystallites at the interface with the substrate, which coalesce and evolve towards a columnar structure near the outer surface. These grains along with various crystallographic defects, such as oxygen impurities, increase the scattering processes of the energy carriers inside the materials, which in turn, reduce significantly their thermal conductivity. Experimental thermal characterization, accurate theoretical description and controlled modulation of the thermal properties of these materials are therefore desirable.This work is devoted to the investigation of the thermal conductivity of nanoscale polycrystalline films and explores the possibility to modulate heat transfer across these low dimensional structures. Because of its great interest in new technological applications, and its outstanding thermal and piezoelectric properties,aluminum nitride (AlN) served as a test material in this study. Highlytextured AlN mono- and multilayers were obtained by reactive radio-frequency magnetron sputtering on single-crystal silicon substrates. The microstructure and distribution of crystallographic orientations along the cross plane were characterized by transmission electron microscopy to accurately determine the grain structure and size evolution. The impact of local oxidation and structural inhomogeneity along the cross plane on the thermal conductivity was investigatedby thickness-dependent measurements performed by the differential 3Wtechnique. The diffusive scattering caused by oxygen-related defects, localized at the interface between two AlN layers, was studied by thermal measurements on the multilayered configuration. Structural features of the polycrystalline films were correlated with their thermal properties using a theoretical model,which takes into account the distribution of the grain geometry and considers the films as a serial assembly of three layers, composed of parallele piped grains.The experimental values of the thermal conductivity of the mono- and multilayerAlN polycrystalline films are well predicted by the developed model, witha deviation of less than 10%. Physical description of scattering phenomena at the interface, grain boundaries, and oxygen related defects, as a function of the characteristic structural heterogeneity, was achieved by comparing the experimental results to the theoretical predictions. It was found that grain mean sizes that evolve along the cross-plane direction, and structural features at the interface and transition domains, are key elements to understand and tailor thermal properties of nanocrystalline films with inhomogeneous structures. The results demonstrate that the structural inhomogeneity and oxygen-related defects in polycrystalline AlN films can be efficiently used to statically tune their cross-plane thermal conductivity. Finally, dynamic modulation of heat transfer bymeans of externally induced elastic strain on mono- and multilayer AlN films was investigated using a novel experimental approach consisting of a 4-pointsbending system coupled to the 3W method.
12

Croissance par épitaxie par jets moléculaires de films de nitrure d'aluminium sur substrats de silicium et de carbure de silicium étudiés par microscopie à force atomique en mode non contact et par microscopie à sonde de kelvin sous ultra vide / Growth by molecular beam epitaxy of aluminium nitride films on silicon and silicon carbide substrates studied by atomic force microscopy in non contact mode and by Kelvin probe force microscopy under ultra high vacuum

Chaumeton, Florian 27 March 2015 (has links)
Cette thèse se situe dans le cadre de l'électronique moléculaire qui vise à réaliser une unité de calcul constituée d'une molécule connectée à des électrodes mésoscopiques. La première étape est de choisir une surface qui soit isolante, afin de découpler les états électroniques de la molécule de ceux du substrat et sur laquelle il soit possible de faire croître des îlots métalliques " 2D ", permettant la connexion de la molécule à un réservoir d'électrons, tout en ayant la possibilité de l'imager en NC-AFM. Notre choix s'est porté sur le nitrure d'aluminium (AlN), en raison de sa grande énergie de bande interdite (6,2 eV) et de sa similarité avec le nitrure de gallium (GaN, 3,4 eV) sur lequel il est possible de faire croitre des îlots 2D de magnésium. Le travail de cette thèse porte sur la croissance par épitaxie par jets moléculaire de films minces d'AlN sur substrats de silicium (Si(111)) et de carbure de silicium (SiC(0001)) et leur étude in-situ par NC-AFM et KPFM sous ultra vide. Les études NC-AFM ont permis d'adapter les protocoles de croissance afin de diminuer significativement les défauts de surface des films d'AlN. Des calculs théoriques DFT ont aidé à adapter ces protocoles de croissance afin d'obtenir de façon reproductible la reconstruction de surface (2x2) de l'AlN pour laquelle la surface est terminée par des adatomes d'azote. A l'issu de cette thèse, les films d'AlN obtenus présentent des surfaces adaptées au dépôt de molécules et d'îlots métalliques. / This thesis is part of molecular electronics, which aims to realize a calculation unit based on a single molecule connected to mesoscopic electrodes. The first step is to find a suitable surface, i.e. an insulating or large gap semi-conductor surface to decouple the electronic states of the molecule from the electronic states of the substrate. It must also be compatible with the growth of flat metallic nano-pads allowing the connection of the molecule to an electron tank, while having the possibility of imaging it in NC-AFM. Our choice was focused on the large gap semi-conductor Aluminum Nitride (AlN, 6.2 eV). Indeed it has been shown that the growth of magnesium on a similar substrate (GaN, 3.4 eV) yields one mono-layer high islands. The present work is focused on the growth by molecular beam epitaxy of AlN thin layers on silicon (Si(111)) and silicon carbide (SiC(0001)) substrates and in-situ study by NC-AFM and KPFM under ultrahigh vacuum. The NC-AFM studies helped to adapt the growth protocols in order to significantly reduce the surface defects of the AlN films. Theoretical calculations (DFT) helped to adapt these growth protocols which allows to reproducibly obtain the (2x2) surface reconstruction for which the surface is terminated by a layer of N atoms. At the end of this thesis, the AlN films obtained present suitable surfaces for depositing metallic electrodes and molecules.
13

Procédés plasmas pour l'optimisation des matériaux intervenant dans le management thermique et la passivation de composants de puissance hyperfréquences à base de GaN et AlGaN

Duquenne, Cyril 14 October 2008 (has links) (PDF)
Ces travaux concernent la mise au point d'un procédé de synthèse de couches minces à basse température d'un matériau diélectrique à forte conductivité thermique pour la passivation de composants HEMT GaN hyperfréquence de puissance. A l'heure actuelle, les performances des composants HEMT (High Electron Mobility Transistor) GaN, bien que très supérieures aux performances des HEMT GaAs, sont directement limitées par la résistance thermique du dispositif. L'intégration d'un matériau de passivation à forte conductivité thermique devrait permettre de diminuer la résistance thermique des composants et d'accroître leurs performances. Le procédé magnétron a été choisi pour sa compatibilité avec les contraintes de température imposées par les technologies de la microélectronique. Notre étude s'est orientée sur l'optimisation de la croissance de films minces de nitrure (AlN et BN) et leur caractérisation structurale par DRX, FTIR, SAED et HRTEM. Le procédé de dépôt a été caractérisé par sonde de Langmuir et analyses OES. Dans le cas de l'AlN, nous avons mis en évidence l'effet prépondérant de la configuration du champ magnétique sur la qualité structurale des films. Un tel contrôle du procédé a permis d'obtenir une croissance épitaxiale de l'AlN sur AlGaN. Les propriétés thermiques des films ont été déterminées grâce au développement d'une méthode de mesure originale bien adaptée à la caractérisation des couches minces. Celle-ci nous a permis de mettre en évidence la corrélation entre les valeurs de conductivité thermique et les caractéristiques des films. In fine, une conductivité thermique de 170 W.K-1.m-1 a été obtenue pour les films d'AlN.

Page generated in 0.0173 seconds