• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of High Cervical Spinal Cord Stimulation on the Expression of SP, Nk-1 and TRPV1 mRNAs During Cardiac Ischemia in Rat

Ding, Xiao Hui, Mountain, Deidra J.Hopkins, Subramanian, Venkateswaran, Singh, Krishna, Williams, Carole Ann 07 September 2007 (has links)
Spinal cord stimulation (SCS) is used to reduce angina that accompanies cardiac ischemia, but little is known about the molecular mechanisms mediating this effect. We studied the expression of SP, neurokinin-1 (NK-1) receptor, and transient receptor potential vanilloid type 1 (TRPV1) mRNA in the rat spinal cord at thoracic 4 (T4), cervical 2 (C2) and caudal brain stem by RT-PCR during intermittent occlusion of the left anterior descending coronary artery (CoAO), during sustained SCS by itself at the C2 spinal segment, and during sustained SCS plus intermittent CoAO. Only SP mRNA was increased significantly in T4 and brainstem during CoAO, while SCS decreased the mRNA levels of SP, NK-1 and TRPV1 significantly in T4 and the brainstem. SCS attenuated the increase of SP and TRPV1 mRNA levels at T4 level induced by intermittent CoAO when the stimulation was applied prior to the initiation of the cardiac ischemia. These results support the role for SP as a putative neurotransmitter for the myocardial ischemia-sensitive afferent neuron signal to the spinal level. They suggest that modification of the ischemic cardiac nociceptive afferent signal by SCS involves a change in SP and TRPV1 expression.

Page generated in 0.0466 seconds