• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of Metabolic Changes Associated with Drug Application and Diet Modification using NMR Metabolomics

Littlefield, Courtney Elizabeth January 2020 (has links)
No description available.
2

Propagation and quality assessment for the introduction of Greyia Radlkoferi into commercialization

Nogemane, Noluyolo 02 1900 (has links)
Greyia radlkoferi is a South African indigenous tree, which has recently been discovered to be a source of extracts that have a potential in the development of cosmeceutical herbal products having the ability to treat hyperpigmentation disorders. For product development however, G. radlkoferi would need to be available in a commercial scale. Greyia radlkoferi grows naturally in the wild and is often available for cultivation as an ornamental plant. In order to establish this plant into cultivation, suitable propagation techniques must be established for rapid multiplication of trees and thus a sustainable leaf production. For consistent and improved leaf supply to the market, agronomic practices that will enhance leaf production were investigated in the current study. Furthermore, in order to meet market demand in terms of good quality extracts with guaranteed therapeutic efficiency, pre-harvest and post-harvest factors that affect the chemical composition of the extracts were investigated. Recently developed biotechnology techniques such as metabolomics using 1H-NMR and multivariate data analysis offered a platform to study the chemical variation of extracts. Therefore, the current study was aimed at understanding the requirements for propagation and optimum leaf production as well as conditions that favour optimum production of secondary metabolite of G. radlkoferi plant material (at pre and post-harvest) and thus assess its commercial viability. To understand the effects of temperature on seed germination of G. radlkoferi, seeds were exposed to five temperatures (10°C, 15°C, 20°C, 25°C and 30°C) in the incubators in the laboratory. Germination of G. radlkoferi by seeds was discovered to be temperature dependent. The optimum germination temperature of 81% was obtained at 25°C. In the case of vegetative propagation by stem cuttings, the effect of cutting position (basal or apical), exogenous rooting hormone (Seradix1, Seradix 2, 0.1% IBA, 0.3% IBA and 0.8% IBA) and cutting position were investigated in the glasshouse. The cutting position had a significant effect on rooting of G. radlkoferi cuttings with basal cuttings exhibiting 35% rooting as compared to 6% rooting attained for the apical cuttings. A clear trend in rooting response to application of rooting hormones was observed, with 0.1% Indole butyric acid (IBA) showing the highest rooting percentage of 63%. Considering the outcomes of the propagation studies as well as the limited material for vegetative propagation, seed propagation appears to be the most suitable technique for large-scale multiplication of G. radlkoferi. The effect of different pruning techniques as well as harvesting frequencies on fresh and dry weights of G. radlkoferi leaves were evaluated. Factors considered were four pruning treatments (‘pruned but not tipped’, ‘tipped but not pruned’, ‘not pruned nor tipped’ as well as ‘pruned and tipped’) and three harvesting periods (monthly, bimonthly and once–off). Bimonthly harvests highly increased leaf production compared to trees that were harvested monthly and once-off with higher leaf fresh weight yield of 238 g per tree or 2.38 tons/per hectare as well as dry weight yield of 83 g per tree or 0.830 tons/hectare. This outcomes of this study further suggested that a suitable pruning practice for G. radlkoferi would be to either ‘prune only’ or ‘cut back the main stem’ rather than a combination of the two treatments. The influence of seasons (summer, autumn, winter and spring) on the anti-tyrosinase activity and metabolomics profile of G. radlkoferi leaf extracts were investigated. Seasons significantly influenced the chemical composition and the efficacy of the plant extracts. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) with kojic acid as positive control. The highest tyrosinase inhibition concentration with IC50 (50% tyrosinase inhibition concentration) value of 30.3±1.8 μg/ml were obtained in winter harvested leaves compared to the other seasons. The lowest IC50 values were obtained in spring. Metabolomics analysis using orthogonal partial least square discriminant analysis (OPLS-DA) provided a clear class separation according to the harvest season. Extracts from winter harvested leaves contained sucrose, acetamide, alanine and a compound of the catechin group (gallocatechin-(4 alpha->8)-epigallocatechin) as revealed by 1H-NMR metabolomics with assistance of LC-MS. Since compounds of the catechin group are well-known tyrosinase inhibitors, the high tyrosinase activity exhibited in extracts of winter harvested G. radlkoferi leaves could be ascribed to the presence of gallocatechin-(4 alpha->8)-epigallocatechin. Based on the outcomes of the seasonal study, we suggest that in order to obtain extracts with high bioactivity, the best suitable time for harvesting leaf samples is in late autumn-early winter. Processing leaf material using three different drying methods (sun, oven and air drying) significantly influenced chemical composition and the efficacy of the plant extracts. Extracts prepared from air-dried leaf material showed the highest tyrosinase inhibition with IC50 value of 17.80 μg/ml compared to extracts of the other drying methods. Extracts of leaves processed with air drying preserved most metabolites during processing while extracts of sun-dried and oven-dried leaves clearly depleted some metabolites especially amino acids and some aromatic compounds. 1H-NMR metabolomics approach with the assistance of LC-MS data successfully determined a positive association of alanine, acetamide, sucrose and gallocatechin-(4 alpha->8)-epigallocatechin as the chemical constituents contributing to the variation in the air-dried leaves compared to the oven-dried leaves. A positive association of valine, alanine, leucine, isoleucine, gallocatechin-(4 alpha->8)-epigallocatechin and glucose contributed to the variation in air-dried group, compared to the sun-dried group. The highest tyrosinase inhibitory activity exhibited in air-dried samples compared to the other drying methods was associated with the presence of gallocatechin-(4 alpha->8)-epigallocatechin. Because air drying preserved most leaf metabolites compared to sun and oven drying, it was regarded as the most suitable method for processing G. radlkoferi leaf material. This study is the first scientific account that provides guidelines and recommendations to (1) establish G. radlkoferi as a cultivated plant for commercialization, (2) optimize leaf production for sustainable supply to the commercial markets and (3) optimize medicinal content of G. radlkoferi related to harvesting time and post-harvest processing (drying), for enhanced quality of extracts and its products / Agriculture, Animal Health and Human Ecology / Ph. D. (Agriculture)
3

Novel NMR Methods for Fast Data Acquisition : Application to Metabolomics

Pudakalakatti, Shivanand January 2014 (has links) (PDF)
Synopsis My research work is focused on: (i) development of novel Fast NMR methods in solution state and their application to metabolomics and small molecules. (ii) NMR based metabolic study of human IVF to assess embryo viability for implantation. The major components of the embryo growth media were identified for evaluating the embryo quality. Described below are the projects carried out towards the dissertation of my PhD. Chapter 1 describes NMR methods which are the foundation stones for new Fast NMR methods developed. Typical 1D and 2D NMR experiments used in metabolomics and statistical methods for analysis are described. A few applications of metabolomics are also covered in the chapter. Chapter 2 describes a new Fast NMR method based on polarization sharing and parallel acquisition using the dual receiver system. The method developed helps in acquiring simultaneously three 2D NMR spectra: 2D [13C-1H] HETCOR, 2D [1H-1H] TOCSY and 2D [13C-1H] HSQC-TOCSY in a single data set. This method achieves a time saving of about two fold. All the experiments are acquired on molecules with natural abundance of 13C. The method was used to assign the side chain atoms (1H and 13C) of two important peptides. i) 12 amino acid residue peptide, which is a part of central linker domain of Human Insulin like Growth Factor Binding Protein-2 known to play a vital role in the IGF system and ii) a 18 amino acid residue peptide which acts as an antimicrobial agent. Chapter 3 describes extension of the Fast NMR method described in chapter 2. The method is combined with G-matrix Fourier Transform NMR spectroscopy. In this method we have acquire simultaneously two 2D NMR experiments and one reduced dimensional 3D experiment. The three experiments are 2D [13C-1H] HETCOR, 2D [1H-1H] TOCSY and GFT (3,2)D [13C-1H] HSQC-TOCSY, which provide complementary information for rapid assignments. GFT (3,2)D [13C-1H] HSQC-TOCSY gives 3D correlations in a 2D manner facilitating high resolution and unambiguous assignments. The experiments were applied for complete assignment of 21 unlabeled metabolite mixtures corresponding to the Innovative Sequential medium (ISM1) used for culturing human embryos for IVF. Further, a 13C multiplicity edition block is added to the method to simplify the resonances assignment in GFT (3,2)D [13C-1H] HSQC-TOCSY. Taken together, experiments provide time gain of order of magnitudes compared to conventional data acquisition. Chapter 4 of the thesis describes a metabolomics study of Human in-vitro fertilization to assess viable embryos of implantation potential using NMR as non-invasive tool. NMR study included the analysis of 127 embryo culture media (Innovative Sequential Media-1) and 29 controls (culture media without embryo) of both day-2 and day-3 transferred. The embryos were divided into 3 categories 1) implanted (successful) 2) transferred not-implanted (unsuccessful) 3) not transferred based on morphological studies. All NMR experiments were acquired with CPMG (T2 filter) incorporated in 1D 1H presaturation pulse scheme. The study was based on estimation of lactate, pyruvate and alanine levels in the embryo culture media (ISM1). The study reveals higher uptake of pyruvate and high pyruvate/alanine ratios in case of implanted embryos compared to one which failed to implant. Present study provides pyruvate/alanine ratio as a biomarker to select the embryos with high implantation potential. The method combined with morphology based assessment or with other biomarkers can be serve as a powerful tool to assess the embryo quality. Chapter 5 describes a novel NMR method for rapid characterization of translation diffusion of molecules in solution either in mixture or pure form. Unlike acquisition of several 2D [13C-1H] HSQC experiments with varying gradients to get diffusion measurement, a single 2D [13C-1H] HSQC is sufficient to measure the diffusion coefficients which is in the linewidths of peaks. The method uses the idea of accordion NMR spectroscopy, wherein gradients are linearly co-incremented with 13C chemical shift evolution period during t1. The methodology speeds up the acquisition by replacing series of 2D [13C-1H] HSQC with single 2D constant time [13C-1H] HSQC. The method was used to monitor the diffusion of metabolites in a time-resolved manner during polymerization of SDS-PAGE gel. Using this method, it was possible to detect the presence of oligomers of diphenylalanine (FF) during its self assembly to form nanotubular structures.

Page generated in 0.0442 seconds