1 |
The Functional Role of NRAP in the NucleolusInder, Kerry, n/a January 2006 (has links)
The nucleolus is the site for rRNA synthesis, a process requiring the recruitment of many proteins involved in ribosomal biogenesis. Nrap is a novel nucleolar protein found to be present in all eukaryotes. Preliminary characterisation of Nrap suggested it was likely to participate in ribosome biogenesis but as with many other nucleolar proteins, the functional role of Nrap is largely unknown. In this study, the role of mammalian Nrap in the nucleolus and in ribosome biogenesis was explored. Initially, a number of tools were generated to investigate Nrap function. This involved raising and purifying a polyclonal antibody against the N-terminal region of Nrap. The anti-Nrap antibody was found to detect two Nrap bands in mouse fibroblast cells, possibly corresponding to the two mouse Nrap isoforms, and . In addition, mammalian expression vectors containing the full Nrap sequence as well as deletion constructs were created. The subcellular localisation of each construct was observed by fluorescent microscopy. It was revealed that recombinant Nrap did not localise to the nucleolus, possibly because it was exported to undergo degradation by the 26S proteasome. Two putative NLSs were found to be responsible for directing Nrap to the nucleus but a region accountable for nucleolar localisation was not identified. The data indicated that multiple domains working together are likely to direct Nrap to the nucleolus. Nrap was also observed to co-localise with nucleolar proteins B23 and p19ARF. Moreover, it was shown by reciprocal immunoprecipitation that these three nucleolar proteins existed in a complex in unsynchronised mouse fibroblast cells. Recent reports demonstrated a complex relationship between B23 and p19ARF although the functional significance remained unclear. Nrap's in vivo association with B23 and p19ARF indicated a specific functional role in the nucleolus. Nrap knockdown using siRNA significantly increased B23 protein levels in a dose-dependent manner and down-regulated p19ARF protein levels at higher siRNA concentration. Preliminary studies also implicated Nrap in cell proliferation through these novel interactions. Both endogenous and recombinant Nrap were found to be highly unstable suggesting that Nrap might regulate B23 and p19ARF through its own tightly regulated stability. Finally, the role of Nrap in rRNA processing was investigated by northern blot analysis. Nrap knockdown was found to affect the levels of 45S, 32S and 28S rRNAs. The changes found may be a consequence of the concurrent perturbation in the levels of B23 and p19ARF caused by Nrap knockdown. As the results were not consistent with previous reports, it was likely that changes to rRNA processing could be contributed to Nrap loss of function. This study demonstrated for the first time a functional role of Nrap in rRNA processing possibly through its association with B23 and p19ARF.
|
2 |
KLHL41 in skeletal muscle developmentPak, Jasmine H. 17 June 2019 (has links)
Skeletal muscle consists of an extremely regular organization of myofibers that are specialized in contraction. Development and maintenance of skeletal muscle function depends on the precise organization of sarcomeric contractile proteins that consist the myofibrils. Impaired or delayed myofibrillogenesis has been identified as the primary pathological mechanism of many skeletal muscle myopathies. Several members of the Kelch family of proteins have been implicated in skeletal muscle development and diseases, and mutations in these proteins have resulted in perturbations in the ubiquitin proteasome system (UPS), which is the primary means of proteasomal degradation in eukaryotes. In particular, KLHL41 of the BTB-BACK Kelch family is primarily expressed in skeletal muscle and has been identified as a regulator of the skeletal muscle differentiation process that results in the normal development and functioning of mature skeletal muscles. KLHL41 acts as a substrate-specific adaptor for Cullin 3 (Cul3) E3 ubiquitin ligase, implicating the role/s of KLHL41 in proteasomal ubiquitination processes in skeletal muscle. Recent studies have determined that the degradation of nebulin-related anchoring protein (NRAP), which was found to interact with KLHL41, is a critical process in skeletal myofibril maturation that is caused by KLHL41-mediated ubiquitination of the NRAP protein. Through this study, it was further confirmed that KLHL41 changes in localization as maturation occurs, which may provide insight into the mechanism of its functions in myofibril maturation. In addition, the study found that KLHL41 promotes the critical process of nebulin-related anchoring protein (NRAP) degradation. Lastly, mutations in the KLHL41, which are known to cause Nemaline Myopathy (NM) in patients, were modeled in murine C2C12 myoblasts to gain a greater understanding of how KLHL41 mutations may affect protein stability and Cul3 E3 ubiquitin ligase activity. Overall, the findings of this thesis support the critical role of KLHL41 in the formation of mature myofibrils, and provides insight into how deficiency of KLHL41 contributes to a disease state through regulation of the CUL3 protein complex. / 2022-06-30T00:00:00Z
|
Page generated in 0.0213 seconds