• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The interaction between NS1B protein of influenza B virus and the ubiquitin-like modifier ISG15 : insights into a unique species specific property of the virus

Sridharan, Haripriya 04 November 2013 (has links)
Influenza B virus causes a respiratory disease in people with a compromised immune system. The NS1B protein of influenza B virus is essential for virus growth and plays a crucial role in inhibiting the anti-viral responses mounted by the infected host cell. The N terminal 104 amino acids of NS1B bind a cellular protein called ISG15. ISG15 is an interferon induced 'ubiquitin-like' protein, and upon interferon induction, is conjugated to hundreds of targets. It has been found that both ISG15 and its conjugation inhibit many viruses. The focus of the current study was to characterize the interaction between NS1B and ISG15. Study of a recombinant influenza B virus which encoded a mutant NS1B protein that is unable to bind ISG15 revealed that ISG15 is mis-localized in cells infected with wild type but not the mutant influenza B virus. Further, such a mutant virus is attenuated in growth as compared to wild type virus in human cell lines but is not attenuated in canine cell lines. This result led to the discovery of the species specific nature of the interaction between NS1B and ISG15. Specifically, NS1B was found to bind ISG15 homologs from human and old world monkeys like Rhesus macaques and African green monkeys but not those from mouse or canines. These findings were extended by identifying the hinge between the N and C terminal domains of ISG15 as one of the major determinants of species specificity. These results highlight the importance of using human or primate cell culture models to study the effect of ISG15 on influenza B virus, and raises new possibilities on differences in the function of the ISG15 system in different species. / text
2

High throughput screening of inhibitors for influenza protein NS1

Xia, Shuangluo 08 November 2011 (has links)
Influenza virus A and B are common pathogens that cause respiratory disease in humans. Recently, a highly virulent H5N1 subtype avian influenza virus caused disease outbreaks in poultry around the world. Drug resistant type A viruses rapidly emerged, and the recent H5N1 viruses were reported to be resistant to all current antiviral drugs. There is an urgent need for the development of new antiviral drugs target against both influenza A and B viruses. This dissertation describes work to identify small molecule inhibitors of influenza protein NS1 by a high throughput fluorescence polarization assay. The N-terminal GST fusion of NS1A (residue 1-215) and NS1B (residue 1-145) were chosen to be the NS1A and NS1B targets respectively for HT screening. In developing the assay, the concentrations of fluorophore and protein, and chemical additives were optimized. A total of 17,969 single chemicals from four compound libraries were screened using the optimized assay. Six true hits with dose-response activity were identified. Four of them show an IC₅₀ less than 1 [micromolar]. In addition, one compound, EGCG, has proven to reduce influenza virus replication in a cell based assay, presumably by interacting with the RNA binding domain of NS1. High throughput, computer based, virtual screenings were also performed using four docking programs. In terms of enrichment rate, ICM was the best program for virtual screening inhibitors against NS1-RBD. The compound ZINC0096886 was identified as an inhibitor showing an IC₅₀ around 19 [micromolars] against NS1A, and 13.8 [micromolars] against NS1B. In addition, the crystallographic structures of the NS1A effector domain (wild type, W187A, and W187Y mutants) of influenza A/Udorn/72 virus are presented. A hypothetical model of the intact NS1 dimer is also presented. Unlike the wild type dimer, the W187Y mutant behaved as a monomer in solution, but still was able to binding its target protein, CPSF30, with wild type binding affinity. This mutant may be a better target for the development of new antiviral drugs, as the CPSF30 binding pocket is more accessible to potential inhibitors. The structural information of those proteins would be very helpful for virtual screening and rational lead optimization. / text

Page generated in 0.0444 seconds