• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 90
  • 27
  • 14
  • 11
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 526
  • 526
  • 103
  • 103
  • 89
  • 82
  • 71
  • 50
  • 45
  • 45
  • 43
  • 43
  • 39
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Numerical modelling of natural flood management and its associated microbial risks in the United Kingdom

Pu, Jaan H. 08 May 2018 (has links)
Yes / This paper reviews and discusses the recent studies of natural flood management (NFM) and its associated microbial risks in the UK and suggests set of numerical modelling approaches for their respective investigation. This study details the importance of precise numerical representation of the NFM to flood inundations and microbial risks caused by NFM measures. Possible future numerical advancements of the numerical modelling for the NFM and microbial activities are also discussed here.
92

Numerical study of steel–concrete composite cellular beam using demountable shear connectors

Dai, Xianghe, Yang, Jie, Zhou, Kan, Sheehan, Therese, Lam, Dennis 28 March 2023 (has links)
Yes / Steel concrete composite beams have been increasingly used in practice due to their advantages with respect to their structural features and constructability. However, in conventional composite beam systems composite action is applied via shear connectors welded at the top flange of the down-stand steel beam and embedded in the concrete slabs, making it less favourable for the beam system to be disassembled and reused. This paper presents a numerical study of a new composite beam system consisting of a cellular steel beam, metal deck flooring and demountable shear connectors. According to the experimental study, this composite beam system made the demounting, reassembly, and member reuse possible, and did not compromise the loading capacity. In the numerical study presented in the paper, a finite element model was developed and validated against the results obtained from the previous experimental study. The parametric study further examined the effects of concrete strength, shear connector arrangements and asymmetry ratios of steel beam section to the load capacity of the composite beam system. The analysis and comparison provided a deeper insight into the behaviour of this type of shear connector. Through this numerical study, the structural merits of the composite beam system using demountable shear connectors were highlighted. Finally, the mid-span plastic moment of the composite beam was predicted using the direction method provided in SCI publications and compared with the moment–deflection relationship obtained from FE modelling. / The research leading to these results is part of a joint project of the University of Bradford, the University of Luxemburg, the Technology University of Delft, the Steel Construction Institute, Tata Steel, Lindab S. A., BmS and AEC3 Ltd. The authors gratefully acknowledge the funding received from the European Commission: Research Fund for Coal and Steel (RFCS-2015, RPJ, 710040). In addition, deep appreciation to Mr. Stephen Robinson for his work done in the laboratory.
93

Numerical Modelling and Analysis of Structural Behaviour of Wall-stud Cold-formed Steel Shear Wall Panels under In-plane Monotonic Loads

Dai, Xianghe January 2012 (has links)
No / This paper presents a numerical modelling method to predict the shear behaviour of typical wall-stud cold-formed steel wall panels subjected to in-plane monotonic loads. In the research presented in this paper, different material and mechanical properties for cold-formed steel sheets, self-drilling screwed connectors and wall fixing boundary conditions were considered to explore the influence of sheath sheeting, connectors and fixing boundary conditions on the structural behaviour of selected wall panels. After the FE model being validated against experimental results, a parametric study was conducted and the comparison and analysis highlight the effect of different sheaths, connectors on to the structural shear behaviour of typical wall-stud cold-formed steel wall panels.
94

Numerical analysis of slender elliptical concrete filled columns under axial compression

Dai, Xianghe, Lam, Dennis, Jamaluddin, N., Ye, J. January 2014 (has links)
This paper presents a non-linear finite element model (FEM) used to predict the behaviour of slender concrete filled steel tubular (CFST) columns with elliptical hollow sections subjected to axial compression. The accuracy of the FEM was validated by comparing the numerical prediction against experimental observation of eighteen elliptical CFST columns which carefully chosen to represent typical sectional sizes and member slenderness. The adaptability to apply the current design rules provided in Eurocode 4 for circular and rectangular CFST columns to elliptical CFST columns were discussed. A parametric study is carried out with various section sizes, lengths and concrete strength in order to cover a wider range of member cross-sections and slenderness which is currently used in practices to examine the important structural behaviour and design parameters, such as column imperfection, non-dimension slenderness and buckling reduction factor, etc. It is concluded that the design rules given in Eurocode 4 for circular and rectangular CFST columns may be adopted to calculate the axial buckling load of elliptical CFST columns although using the imperfection of length/300 specified in the Eurocode 4 might be over-conservative for elliptical CFST columns with lower non-dimensional slenderness.
95

Voltammetry of electrochemically heterogeneous surfaces

Ward, Kristopher R. January 2013 (has links)
In this thesis, mathematical modelling is used to theoretically investigate the electrochemical behaviour of surfaces which can be broadly classified as being ‘electrochemically heterogeneous’. Simulated voltammetry is used in the exploration of a number of specific systems as listed below. The cyclic voltammetry of electrodes composed of two different electroactive materials that differ in terms of their electrochemical rate constants towards any given redox couple. The effect of the distribution of the two materials was investigated and the occurrence of split peak cyclic voltammetry where two peaks are observed in the forward sweep, was studied. The technique was specifically applied to the modelling of highly-ordered pyrolytic graphite (HOPG). The steady-state voltammetry of a conducting spherical particle resting on an insulating supporting surface. An algebraic expression that completely describes the voltammetric waveform in the limit of irreversible kinetics was developed. The cyclic voltammetry of the EC′ (catalytic) mechanism at a regularly distributed array of hemispherical particles on an insulating supporting surface. Particular attention was paid to the ‘split-wave’ phenomenon, where two peaks are observed in the forward scan of a cyclic voltammogram and the conditions under which these peaks are resolvable were elucidated. The linear sweep voltammetry of micro- and nano-particle modified electrodes and other electrodes of partially covered and non-planar geometry. It was demonstrated that the apparent electrochemical rate constant of the reaction and thus the peak position of the voltammetry is dependent only on the relative electroactive surface area of the particles on the surface and not upon their shape or distribution. This has wide reaching implications as it can be used to explain some instances of a purported nano-catalytic effect without appeal to altered properties at the nanoscale. The linear sweep voltammetry of the interior of a partially electroactive cylindrical pore. Four limiting cases were observed and fully characterised. The linear sweep voltammetry of porous surfaces. It was established that if the pores are less than a certain threshold depth, then a porous surface will also display an apparent catalytic effect that is dependent on the relative electroactive surface area (including the area in the interior of the pores).
96

Modelling of end-pumped Ho:YLF amplifiers

Collett, Oliver John Philip 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / This work is a thesis regarding the energy scaling of end-pumped Ho:YLF amplifiers. The work includes: a brief review of laser physics and models, the development of a suitable three dimensional time resolved numerical model, a parametric study of double pass ampli ers simulated using the model, comparison between the simulation and the experimental results of a double pass ampli er system, and simulation of a high energy single pass ampli er. A three dimensional time resolved numerical model of an end-pumped ampli er was developed. A rate equation model was used to simulate the absorption and emission of light, energy transfer upconversion, and spontaneous emission within the gain medium. In the traveling wave approximation the propagation of light through the gain medium was modelled with the use of a split step method that included di raction and gain. A parametric study was performed to nd the design parameters for an end-pumped two pass ampli- er. Limited optimisation of several ampli er parameters was performed. The study focused on the optimisation of the energy per pulse through changes to the following parameters: crystal length, laser beam size, pump beam sizes, and pump wavelength. The nal design speci cations for an experimental system were for a 100 mm long 0.5 % (atm.) doped Ho:YLF gain medium, pump and seed beams with spot sizes with e ective beam sizes of 1 mm and 0.95 mm respectively and a pump wavelength of 1892 nm. The simulation predicted pulse energies above 480 mJ when seeded by a 55 mJ pulse at repetition rates of 50 Hz. The experimentally realised system with similar design parameters produced the highest reported energy, 330 mJ, from an end-pumped Ho:YLF ampli er. Comparison between the simulation and the experimental results showed signi cant deviation. The deviation was explained by the e ect of parameters not included previously in the simulation. These parameters were the power of the continuous component of the seed beam, and the energy transfer upconversion rate. Limitations and delity of the numerical model with respect to the experimental system are discussed, notably the model of the highly divergent pump beam was simplistic. Preliminary simulation results of a high energy single pass ampli er predict that energy scaling in Ho:YLF follows linearly with respect to pump power and that in the ideal case, multi-Joule operation is possible at 50 Hz with optical to optical e ciencies of 19%.
97

A Numerical Modelling Study of Tropical Cyclone Sidr (2007): Sensitivity Experiments Using the Weather Research and Forecasting (WRF) Model

Shepherd, Tristan James January 2008 (has links)
The tropical cyclone is a majestic, yet violent atmospheric weather system occurring over tropical waters. Their majesty evolves from the significant range of spatial scales they operate over: from the mesoscale, to the larger synoptic-scale. Their associated violent winds and seas, however, are often the cause of damage and destruction for settlements in their path. Between 10/11/07 and 16/11/07, tropical cyclone Sidr formed and intensified into a category 5 hurricane over the southeast tropical waters of the northern Indian Ocean. Sidr tracked west, then north, during the course of its life, and eventually made landfall on 15/11/07, as a category 4 cyclone near the settlement of Barguna, Bangladesh. The storm affected approximately 2.7 million people in Bangladesh, and of that number 4234 were killed. In this study, the dynamics of tropical cyclone Sidr are simulated using version 2.2.1 of Advanced Weather Research and Forecasting — a non-hydrostatic, two-way interactive, triply-nested-grid mesoscale model. Three experiments were developed examining model sensitivity to ocean-atmosphere interaction; initialisation time; and choice of convective parameterisation scheme. All experiments were verified against analysed synoptic data. The ocean-atmosphere experiment involved one simulation of a cold sea surface temperature, fixed at 10 °C; and simulated using a 15 km grid resolution. The initialisation experiment involved three simulations of different model start time: 108-, 72-, and 48-hours before landfall respectively. These were simulated using a 15 km grid resolution. The convective experiment consisted of four simulations, with three of these using a different implicit convective scheme. The three schemes used were, the Kain-Fritsch, Betts-Miller-Janjic, and Grell-Devenyi ensemble. The fourth case simulated convection explicitly. A nested domain of 5km grid spacing was used in the convective experiment, for high resolution modelling. In all experiments, the Eta-Ferrier microphysics scheme, and the Mellor-Yamada-Janjic planetary boundary layer scheme were used. As verified against available observations, the model showed considerable sensitivity in each of the experiments. The model was found to be well suited for combining ocean-atmosphere interactions: a cool sea surface caused cyclone Sidr to dissipate within 24 hours. The initialisation simulations indicated moderate model sensitivity to initialisation time: variations were found for both cyclone track and intensity. Of the three simulations, an initialisation time 108 hours prior to landfall, was found to most accurately represent cyclone Sidr’s track and intensity. Finally, the convective simulations showed that considerable differences were found in cyclone track, intensity, and structure, when using different convective schemes. The Kain-Fritsch scheme produced the most accurate cyclone track and structure, but the rainfall rate was spurious on the sub-grid-scale. The Betts-Miller-Janjic scheme resolved realistic rainfall on both domains, but cyclone intensity was poor. Of particular significance, was that explicit convection produced a similar result to the Grell-Devenyi ensemble for both model domain resolutions. Overall, the results suggest that the modelled cyclone is highly sensitive to changes in initial conditions. In particular, in the context of other studies, it appears that the combination of convective scheme, microphysics scheme, and boundary layer scheme, are most significant for accurate track and intensity prediction.
98

Numerical Modelling of Sooting Laminar Diffusion Flames at Elevated Pressures and Microgravity

Charest, Marc Robert Joseph 31 August 2011 (has links)
Fully understanding soot formation in flames is critical to the development of practical combustion devices, which typically operate at high pressures, and fire suppression systems in space. Flames display significant changes under microgravity and high-pressure conditions as compared to normal-gravity flames at atmospheric pressure, but the exact causes of these changes are not well-characterized. As such, the effects of gravity and pressure on the stability characteristics and sooting behavior of laminar coflow diffusion flames were investigated. To study these effects, a new highly-scalable combustion modelling tool was developed specifically for use on large multi-processor computer architectures. The tool is capable of capturing complex processes such as detailed chemistry, molecular transport, radiation, and soot formation/destruction in laminar diffusion flames. The proposed algorithm represents the current state of the art in combustion modelling, making use of a second-order accurate finite-volume scheme and a parallel adaptive mesh refinement algorithm on body-fitted, multi-block meshes. An acetylene-based, semi-empirical model was used to predict the nucleation, growth, and oxidation of soot particles. Reasonable agreement with experimental measurements for different fuels and pressures was obtained for predictions of flame height, temperature and soot volume fraction. Overall, the algorithm displayed excellent strong scaling performance by achieving a parallel efficiency of 70% on 384 processors. The effects of pressure and gravity were studied for flames of two different fuels: ethylene-air flames between pressures of 0.5–5 atm and methane-air flames between 1–60 atm. Based on the numerical predictions, zero-gravity flames had lower temperatures, broader soot-containing zones, and higher soot concentrations than normal-gravity flames at the same pressure. Buoyant forces caused the normal-gravity flames to narrow with increasing pressure while the increased soot concentrations and radiation at high pressures lengthened the zero-gravity flames. Low-pressure flames at both gravity levels exhibited a similar power-law dependence of the maximum carbon conversion on pressure which weakened as pressure was increased. This dependence decayed at a faster rate in zero gravity when pressure was increased beyond 1–10 atm.
99

Development of a model for predicting wave-current interactions and sediment transport processes in nearshore coastal waters

Navera, Umme Kulsum January 2004 (has links)
A two-dimensional numerical model has been developed to simulate wave-current induced nearshore circulation patterns in beaches and surf zones. The wave model is based on the parabolic wave equation for mild slope beaches. The parabolic equation method has been chosen because it is a viable means of predicting the characteristics of surface waves in slowly varying domains and in its present form dissipation and wave breaking are also included. The two dimensional parabolic mild slope equation was discretised and solved in a fully implicit manner, so stability did not create a major problem. This wave model was then embedded into the existing numerical model DIVAST. The sediment transport formulae from Van Rijn was used to calculate the nearshore sediment transport rate.
100

Mass Loading of Space Plasmas

Lidström, Viktor January 2017 (has links)
The solar wind interaction with an icy comet is studied through a model problem. A hybrid simulation is done of a box with evenly distributed water ions and protons, where initially the water ions are stationary, and protons move with the speed of the solar wind. The purpose of the thesis is to investigate the interaction between the two species through the convective electric field, and focus is on early acceleration of pick-up ions, and deflection of the solar wind. It is relevant to the cometary case, because it enables study of the physics of this interaction, without involving other mechanisms, such as bow shock, magnetic field pile-up and draping. The species are found to exchange kinetic energy similar to a damped oscillator, where the dampening is caused by kinetic energy being transferred to the magnetic field. At early times, i.e. times smaller than the gyration time for the water ions, the solar wind does not lose much speed when it is deflected. For comparable number densities, the solar wind can be deflected more than 90° at early times, and loses more speed, and water ions are picked up faster. The total kinetic energy of the system decreases when energy builds up in the magnetic field. The nature of the energy exchange is strongly dependent on the number density ratio between water ions and protons. A density instability with behaviour similar to a plasma beam instability forms as energy in the magnetic field increases, and limits the amount of time the simulation preserves total energy, for the particular hybrid solver used. There is a discussion on the structure of the density instability, and it is compared to cometary simulations.

Page generated in 0.0185 seconds