• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inactivation of the Glycoside Hydrolase NagZ Attenuates Antipseudomonal beta-Lactam Resistance in Pseudomonas aeruginosa

Asgarali, Azizah 14 September 2009 (has links)
Pseudomonas aeruginosa is a versatile Gram-negative opportunistic pathogen notorious for its ability to chronically colonize and deteriorate the pulmonary function of the cystic fibrosis lung. It exhibits high resistance to beta-lactam antibiotics, including cephalosporins and monobactams, via induction of their chromosomally encoded AmpC beta-lactamase. Regulation of ampC expression is coupled to the bacterial cell wall recycling pathway by the activity of NagZ, a glycosidase that produces 1,6-anhydroMurNAc-tri-(or penta-) peptides from internalized peptidoglycan metabolites. During beta-lactam therapy, this tripeptide rapidly concentrates in the bacterial cytosol to levels sufficient for it to bind and activate AmpR, the transcriptional activator of ampC. P. aeruginosa also encodes three ampD genes, each expressing an N-acetylmuramyl-L-amidase that cleaves the peptide stems from 1,6-anhydroMurNAc or GlcNAc 1,6-anhydroMurNAc. AmpD thus suppresses 1,6-anhydroMurNAc-peptide accumulation and moderates ampC induction. Selection of AmpD null mutants during therapy thus causes chronic hyperproduction of beta-lactamase, presumably from an increase in NagZ product, and have been identified in P. aeruginosa strains isolated from chronically infected CF patients. Mutants harboring an inactivated nagZ gene in a wild-type P. aeruginosa background were isolated and were found to have increased antibiotic susceptibility to antipseudomonal beta-lactams. Inactivating nagZ in a triple ampD mutant substantially decreased the expression of ampC and rendered these high-level resistant strains susceptible to antipseudomonal beta-lactams at wild-type strain levels. This brings the susceptibility of the P. aeruginosa strains down to the beta-lactam therapy range accepted by CLSI for use in cystic fibrosis patients suffering from chronic Pseudomonas aeruginosa infections. To assess whether P. aeruginosa expresses more than one N-acetyl-beta-glucosaminidase that could contribute to the production of the activating tripeptide, residual activity assays were conducted on nagZ deficient mutants. Mutants were devoid of activity so it was concluded that P. aeruginosa expresses only the one N-acetyl-beta-glucosaminidase in study, NagZ. Complementation studies using the wild type nagZ gene restored the wild type phenotypes, particularly evident in the triple ampD null mutants. These findings suggest that NagZ activity is required for ampC induction, and that an intricate balance exists between NagZ and AmpD activity to regulate the concentration of the inducer molecule 1,6-anhydroMurNAc-tripeptide.
2

Inactivation of the Glycoside Hydrolase NagZ Attenuates Antipseudomonal beta-Lactam Resistance in Pseudomonas aeruginosa

Asgarali, Azizah 14 September 2009 (has links)
Pseudomonas aeruginosa is a versatile Gram-negative opportunistic pathogen notorious for its ability to chronically colonize and deteriorate the pulmonary function of the cystic fibrosis lung. It exhibits high resistance to beta-lactam antibiotics, including cephalosporins and monobactams, via induction of their chromosomally encoded AmpC beta-lactamase. Regulation of ampC expression is coupled to the bacterial cell wall recycling pathway by the activity of NagZ, a glycosidase that produces 1,6-anhydroMurNAc-tri-(or penta-) peptides from internalized peptidoglycan metabolites. During beta-lactam therapy, this tripeptide rapidly concentrates in the bacterial cytosol to levels sufficient for it to bind and activate AmpR, the transcriptional activator of ampC. P. aeruginosa also encodes three ampD genes, each expressing an N-acetylmuramyl-L-amidase that cleaves the peptide stems from 1,6-anhydroMurNAc or GlcNAc 1,6-anhydroMurNAc. AmpD thus suppresses 1,6-anhydroMurNAc-peptide accumulation and moderates ampC induction. Selection of AmpD null mutants during therapy thus causes chronic hyperproduction of beta-lactamase, presumably from an increase in NagZ product, and have been identified in P. aeruginosa strains isolated from chronically infected CF patients. Mutants harboring an inactivated nagZ gene in a wild-type P. aeruginosa background were isolated and were found to have increased antibiotic susceptibility to antipseudomonal beta-lactams. Inactivating nagZ in a triple ampD mutant substantially decreased the expression of ampC and rendered these high-level resistant strains susceptible to antipseudomonal beta-lactams at wild-type strain levels. This brings the susceptibility of the P. aeruginosa strains down to the beta-lactam therapy range accepted by CLSI for use in cystic fibrosis patients suffering from chronic Pseudomonas aeruginosa infections. To assess whether P. aeruginosa expresses more than one N-acetyl-beta-glucosaminidase that could contribute to the production of the activating tripeptide, residual activity assays were conducted on nagZ deficient mutants. Mutants were devoid of activity so it was concluded that P. aeruginosa expresses only the one N-acetyl-beta-glucosaminidase in study, NagZ. Complementation studies using the wild type nagZ gene restored the wild type phenotypes, particularly evident in the triple ampD null mutants. These findings suggest that NagZ activity is required for ampC induction, and that an intricate balance exists between NagZ and AmpD activity to regulate the concentration of the inducer molecule 1,6-anhydroMurNAc-tripeptide.
3

Synthèse d'azépanes inhibiteurs sélectifs de NagZ, une β-N-acétyl-D-glucosaminidase impliquée dans l'antibiorésistance du pathogène Pseudomonas aeruginosa / Synthesis of azepanes as selective inhibitors of NagZ, a β-N-acetyl-D-glucosaminidase involved in antibiotic resistance of the pathogen Pseudomonas aeruginosa

Bouquet, Jaufret 14 December 2016 (has links)
Pseudomonas aeruginosa est une bactérie à Gram négatif ayant un rôle central dans la morbidité et la mortalité des patients mucoviscidosiques, dont l'environnement pulmonaire particulier favorise les infections chroniques par de nombreux pathogènes opportunistes. Malheureusement, de plus en plus de souches développent des résistances, rendant les antibiothérapies à base de β-lactames de moins en moins efficaces. Parmi les différents mécanismes de défenses développés par P. aeruginosa, l'un des plus important est la détection de l'activité antibiotique, avec en réponse la production de la β-lactamase AmpC, une enzyme qui dégrade les antibiotiques β-lactames. Cette détection met en œuvre la glycosylhydrolase NagZ, qui catalyse la formation de l'inducteur d'AmpC.Récemment au laboratoire, nous avons synthétisé un inhibiteur sélectif de NagZ basé sur une structure azépane. La co-administration à une souche résistante de P. aeruginosa de notre composé et de l'antibiotique β-lactame ceftazidime conduit à une perte de la résistance à l'antibiotique de 50%.Afin d'améliorer la sélectivité et l'activité de notre composé lead, des modifications chimiques du groupement acétamide et du groupement hydroxyle en position C-6 ont été réalisées. L'étude des relations de structure-activité basées sur un cliché cristallographique et sur une étude de docking ont ainsi pu être réalisées. Une autre stratégie explorée a consisté à fonctionnaliser l'atome d'azote endocyclique par un motif sidérophore afin de faciliter la pénétration du composé, ce type de groupement étant en effet connu pour jouer le rôle de cheval de Troie.Les azépanes synthétisés ont été évalués par nos collaborateurs biologistes au Japon et au Canada. / Pseudomonas aeruginosa is a gram negative bacterium playing a major role in morbidity and mortality among CF patients, whose particular pulmonary environment promotes chronic infections by various pathogens1. Unfortunately, more and more bacterial strains are developing resistance, making β-lactam-based antibiotic therapies less effective. Among the different mechanisms of defense developed by P. aeruginosa, one of the most important is the detection of the antibiotic activity by the pathogen, responsively producing the β-lactamase AmpC, an enzyme that degrades the β-lactam antibiotic. This detection implements the glycosylhydrolase NagZ, which catalyzes the formation of the enzyme inducer of AmpC2.We have recently designed a selective inhibitor of NagZ based on an azepane structure. Its co-administration with β-lactam ceftazidime to a β-lactam-resistant strain of P. aeruginosa causes a 50% decrease of the antibiotic resistance3.In order to improve the selectivity and the efficiency of our lead compound, chemical modifications of the acetamide moiety and of the hydroxyl group at C6 have been achieved, allowing to perform a SAR study supported by crystallographic studies and molecular modeling. Another strategy explored has consisted in the functionalization of the endocyclic nitrogen atom of the azepane by a siderophore that will act as a Trojan horse4, in order to improve the penetration of the azepane.The libraries of compounds synthesized were biologically evaluated by our Canadian and Japanese partners.

Page generated in 0.0314 seconds