• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation of Alamouti Coded MIMO Signals over a Nakagami Fading Channel

Manamohan, Swathi 23 September 2019 (has links)
No description available.
2

OPTIMIZED FUZZY BASED POWER CONTROL STRATEGY IN COGNITIVE RADIO NETWORKS IN MULTI FADING PROPAGATION ENVIRONMENTS

Bejjenki, Praneeth Kumar, Goraya, Muneeb Ahmed, Moid, Syed Fovad January 2013 (has links)
In this thesis we have considered a cognitive radio network (CRN) with a pair of primary user (PU) and secondary user (SU) in spectrum sharing networks in path-loss and without path-loss propagation environments under identically distributed m-Nakagami fading channel. The thesis consists of three parts. In the first part we propose an optimized Takagi-Sugeno Fuzzy Inference System (FIS) based power control strategy in cognitive radio networks (CRN) in spectrum sharing network in without path-loss propagation environment. The second part proposes an optimized Takagi-Sugeno FIS based power control strategy in cognitive radio networks in spectrum sharing network in path-loss propagation environment. For without path-loss propagation environment the proposed FIS takes the interference channel gain ratio between SU transmitter (CUtx) and PU receiver (PUrx) and Signal to Noise Ratio (SNR) towards PU transmitter (PUtx) as antecedents and outputs the power scaling factor for SU. For path-loss propagation environment the proposed FIS takes the relative distance ratio between CUtx and PUrx and SNR towards PUtx as antecedents and outputs the power scaling factor for SU. The output power scaling factor is used to vary the transmit power of SU such that it does not degrade the quality of service (QoS) of PU link. The third part presents an implementation of orthogonal frequency division multiplexing (OFDM) transmission technique in CRN. The OFDM technique has intellectual attractive features like coping with the inter symbol interference (ISI), while providing increasing spectral efficiency and improved performance. This can be used in emergency conditions where transmission requires reliability and high data rate. The OFDM transmission technique is applied towards SU transmitter in CRN, which enables SU to utilize the spectrum efficiently under various fading environments. Spectrum sharing networks in with and without path-loss propagation environments and OFDM transmission were tested for bit error rate (BER) performance after fading effects from m-Nakagami fading channel. We conclude that by applying Takagi-Sugeno Fuzzy Inference System (FIS) based power control strategy we can improve the BER performance of PU when compared with no power control strategy and with other fuzzy based power control technique. OFDM transmission technique gives us better data rate and slightly improved BER in CRN hence making it suitable for use in emergency conditions. / mobile: 0735032048 (Muneeb Goraya)
3

Performance analysis of the IEEE 802.11A WLAN standard optimum and sub-optimum receiver in frequency-selective, slowly fading Nakagami channels with AWGN and pulsed noise jamming

Kalogrias, Christos 03 1900 (has links)
Approved for public release, distribution is unlimited / Wide local area networks (WLAN) are increasingly important in meeting the needs of next generation broadband wireless communications systems for both commercial and military applications. Under IEEE 802.11a 5GHz WLAN standard, OFDM was chosen as the modulation scheme for transmission because of its well-known ability to avoid multi-path effects while achieving high data rates. The objective of this thesis is to investigate the performance of the IEEE 802.11a WLAN standard receiver over flat fading Nakagami channels in a worst case, pulse-noise jamming environment, for the different combinations of modulation type (binary and non-binary modulation) and code rate specified by the WLAN standard. Receiver performance with Viterbi soft decision decoding (SDD) will be analyzed for additive white Gaussian noise (AWGN) alone and for AWGN plus pulse-noise jamming. Moreover, the performance of the IEEE 802.11a WLAN standard receiver will be examined both in the scenario where perfect side information is considered to be available (optimum receiver) and when it is not (sub-optimum receiver). In the sub-optimum receiver scenario, the receiver performance is examined both when noise-normalization is utilized and when it is not. The receiver performance is severely affected by the pulse-noise jamming environment, especially in the suboptimum receiver scenario. However, the sub-optimum receiver performance is significantly improved when noise-normalization is implemented. / Lieutenant, Hellenic Navy

Page generated in 0.0826 seconds