• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invariants of Modular Two-Row Groups

Wu, YINGLIN 06 October 2009 (has links)
It is known that the ring of invariants of any two-row group is Cohen-Macaulay. This result inspired the conjecture that the ring of invariants of any two-row group is a complete intersection. In this thesis, we study this conjecture in the case where the ground field is the prime field $\mathbb{F}_p$. We prove that all Abelian reflection two-row $p$-groups have complete intersection invariant rings. We show that all two-row groups with \textit{non-normal} Sylow $p$-subgroups have polynomial invariant rings. We also show that reflection two-row groups with \textit{normal} reflection Sylow $p$-subgroups have polynomial invariant rings. As an interesting application of a theorem of Nakajima about hypersurface invariant rings, we rework a classical result which says that the invariant rings of subgroups of $\text{SL}(2,\,p)$ are all hypersurfaces. In addition, we obtain a result that characterizes Nakajima $p$-groups in characteristic $p$, namely, if the invariant ring is generated by norms, then the group is a Nakajima $p$-group. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2009-09-29 15:08:40.705

Page generated in 0.0322 seconds