• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure and Physicochemical Properties of Hydroxypropyl Methylcellulose (HPMC) Formulated Films for Pharmaceutical Applications : Relevance to Surface Properties / Structure et propriétés physico-chimiques de films d'Hydroxypropyle méthylcellulose (HPMC) formulés pour des applications pharmaceutiques : Relation avec les propriétés de surface

Fahs, Ahmad 14 December 2009 (has links)
L’Hydroxypropyle méthylcellulose (HPMC) constitue un des polymères les plus utilisés pour la production de films destinés aux applications pharmaceutiques (gélules, comprimés, etc.). Afin de contrôler les propriétés physico-chimiques de films HPMC, des additifs sont fréquemment incorporés pendant la formulation du film: ce sont dans la plupart des cas un lubrifiant hydrophobe (acides gras) ou un plastifiant hydrophile (le polyéthylène glycol). L’objectif principal de ce travail est d’étudier les propriétés physico-chimiques en volume et en surface des films HPMC formulés aux échelles nanoscopique et macroscopique. Les propriétés volumiques concernent l’isotherme de sorption de l’eau, le taux de transmission de la vapeur d’eau, les propriétés thermiques et mécaniques des films. Les caractéristiques de surface ont été exploitées en termes de structuration, morphologie, séparation de phase, énergie de surface, adhésion et friction de films HPMC formulés. A l’échelle nanoscopique, la microscopie à force atomique en mode contact et en mode friction est un outil puissant pour étudier la nanoadhésion et la nanofriction. A l’échelle macroscopique, le test de tack et le tribomètre ont permis d’accéder aux propriétés d’adhésion et tribologiques. La présente étude souligne que les propriétés de films HPMC dépendent fortement de la nature et de la concentration de l’additif, et/ou de l’affinité avec l’eau. Elle montre aussi que la compatibilité HPMC-additif semble un facteur intéressant pour la variation des propriétés de surface de films HPMC formulés, et que la formulation est un moyen efficace pour contrôler les propriétés physico-chimiques de films à base de biopolymères. / Hydroxypropyl methylcellulose (HPMC) constitutes one of the most dedicated polymers used in the production of film coatings for pharmaceutical applications (capsules, tablets, etc.). In order to control the physicochemical properties of HPMC films, additives are frequently incorporated during film formulation: these are in most cases hydrophobic lubricant (like fatty acids) or hydrophilic plasticizer (like polyethylene glycol). The main objective of this work is to study the bulk and the surface physicochemical properties of HPMC formulated films at nanoscopic and macroscopic scales. Bulk properties include moisture sorption isotherms, barrier properties, thermal and mechanical properties. The surface characteristics have been explored in terms of structuration, surface morphologies, surface phase separation, surface energy, adhesion, and friction properties of HPMC-formulated films. At nanoscale, atomic force microscopy in contact mode and in friction mode is a powerful tool for studying nanoadhesion and nanofriction. At macroscale, tack test and pin-on-disk tribometer were conducted to access adhesion and tribological properties. The present study underlines the strong dependence of film properties on additive nature, concentration, and/or water sensitivity. It also shows that first the HPMC-additive compatibility seems to be an interesting factor behind the variation of surface properties of HPMC-formulated films, and second that formulation is an effective way to tune physicochemical properties of biopolymer-based films.

Page generated in 0.2326 seconds