Spelling suggestions: "subject:"nanostructuring"" "subject:"andstructuring""
1 |
Interaction of Structured Femtosecond Light Pulses with MatterRahimiangolkhandani, Mitra 28 June 2021 (has links)
Physics and potential applications of femtosecond laser pulses interacting with matter have captured interest in various fields, such as nonlinear optics, laser micromachining, integrated optics, and solar cell technologies. On the one hand, such ultrashort intense pulses make them practical elegant tools to be utilized for direct structuring of materials with high accuracy and numerous potential applications. On the other hand, studying the fundamental aspects and nonlinear nature of such interactions opens new remarkable venues for various unique investigations. In recent years, the emerging topic of structured light (also known as twisted or optical vortex light), i.e., a beam of light with a twisted wave-front that can carry orbital angular momentum (OAM), has attracted the attention of many researchers working in the field of light-matter interaction. Such beams offer various applications from classical and quantum communication to imaging, micro/nano-manipulation, and modification of fundamental processes involved in light-matter interactions, e.g., absorption and emission. Nevertheless, the fabrication of complex structures, controlled modification, and achieving a high spatial resolution in material processing still remain in the spotlight. Moreover, the fundamental role of orbital angular momentum in the nonlinear absorption of materials, particularly in solids, has yet remained a subject of debate. Addressing these points was the main motive behind this dissertation. To accomplish this objective and investigate new aspects of structured light-matter interaction, I conducted various experiments, the results of which are presented in this work. The general idea was to study the interaction of femtosecond laser radiation, having a structured phase and polarization, with the matter in two aspects: (i) surface morphology modification and (ii) nonlinear absorption of solids. In this regard, I studied surface processing of crystalline silicon and CVD diamond with femtosecond laser vortex pulses generated by a birefringent phase-plate, known as q-plate, in single and multiple pulse irradiation regimes, respectively. The characterization of the modified region was performed using optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). I demonstrated that upon irradiation of a single vortex pulse on silicon, a nano-cone structure is formed within the ablated crater, whose height was independent of the helicity of the twisted light. However, for a linearly polarized vortex pulse, the height of the nano-cone decreases at higher pulse energies. The dynamics of nano-cone formation and the role of polarization were also investigated by simulating the mass transport function in this process. Moreover, using superimposed vortex beams, we fabricated complex patterns containing several nano-cones, by single-shot irradiation on the silicon surface. My experimental results offer an ability to actively control and manipulate material, in terms of the nanocones position, in two dimensions with an ultra-high resolution. I further proceeded with our experiments in the multiple pulse regime on a diamond target. By irradiation of a high number of superimposed vortex pulses, I was able to imprint complex polarization states of structured light on the target surface in the form of periodic nano-ripples. This procedure enabled us to not only generate spatially varying nano-gratings but also directly visualize and study very complex states of polarization. Besides these surface structuring, I carried out experimental studies to investigate the response of bulk material to an incident circularly polarized vortex beam that carries orbital angular momentum. The experimental results reveal, for the first time, that such an interaction can produce a differential absorption that gives rise to helical dichroism. We demonstrate that this response is sensitive to the handedness and degree of the twist in the incident vortex beam. Such a dichroism effect may be attributed to the excitation of dipole-forbidden atomic transitions, e.g., electric quadrupole transitions. However, this explanation is not absolute and remains open to further research and investigations.
|
2 |
Micro and nano structuring of sapphire for micro injection process investigation,Bigot, S., Lacan, F., Hirshy, H., Petkov, P.V., Babenko, Maksims, Gonzalez Castro, Gabriela, Sweeney, John, Ugail, Hassan, Whiteside, Benjamin R. January 2014 (has links)
No / The work presented in this paper contributes to a wider research objective aiming at gaining a better understanding of the injection
moulding process at microscales. More specifically, it contributes to the development of a new modelling approach combining
experimental observation and mathematical modelling to characterise thermal contact resistance that results from the
imperfections present on the surfaces when two surfaces are brought in contact. Thus, this paper describes micro and nano
structuring technologies (Focus Ion beam and Laser Ablation) used to structure sapphire inserts that are used as ”windows” in the
injection moulding process, allowing thermal measurements with a high speed thermal camera whilst sapphire structures are filled
with polymer melt. / The Engineering and
Physical Sciences Research Council (EPSRC) under the
grant EP/I014551/1 and the Interreg IVB project “ECOefficient
LASER technology for FACTories of the future”.
|
3 |
Hierarchical carbon structures with vertically- aligned nanotube carpets for oil-water separation under different conditionsKiaei, Kimia 05 September 2019 (has links)
No description available.
|
Page generated in 0.0871 seconds