• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Angle- and Spectral-Dependent Light Scattering from Plasmonic Nanocups

Li, Yang 05 June 2013 (has links)
The interaction of light with small designed particles and structures gives rise to an increasing number of phenomena of potentially dramatic technological importance, such as metamaterials, superlens focusing, and enhanced spectroscopy. Metallic nanostructures with their geometry-dependent optical resonances are a topic of intense current interest due to their ability to manipulate light in ways not possible with conventional optical materials. A particularly fascinating aspect of these systems is the recently realized possibility of creating optical frequency “magnetic plasmon” responses of comparable magnitude to the “electric plasmon” response. Au nanocups at their magnetoinductive resonance have the unique ability to redirect scattered light in a direction dependent on cup orientation, as a true three-dimensional nanoantenna. As optical frequency nanoantennas, reduced-symmetry plasmonic nanoparticles have light-scattering properties that depend strongly on geometry, orientation, and variations in dielectric environment. Here we investigate how these factors influence the spectral and angular dependence of light scattered by Au nanocups. A simple dielectric substrate causes the axial, electric dipole mode of the nanocup to deviate substantially from its characteristic cos square free space scattering profile, while the transverse, magnetic dipole mode remains remarkably insensitive to the presence of the substrate. Nanoscale irregularities of the nanocup rim and the local substrate permittivity have a surprisingly large effect on the spectral- and angle-dependent light-scattering properties of these structures. The different angular scattering and wavelength response from the axial and transverse nanocup modes make the nanocup an interesting particle for the nanoscale manipulation of light in three dimensions. The sensitivity of this system to geometric and environmental factors may present opportunities for active, substrate-mediated control of light scattering.
2

Angle- and Spectral-Dependent Light Scattering from Plasmonic Nanocups

Li, Yang 05 June 2013 (has links)
The interaction of light with small designed particles and structures gives rise to an increasing number of phenomena of potentially dramatic technological importance, such as metamaterials, superlens focusing, and enhanced spectroscopy. Metallic nanostructures with their geometry-dependent optical resonances are a topic of intense current interest due to their ability to manipulate light in ways not possible with conventional optical materials. A particularly fascinating aspect of these systems is the recently realized possibility of creating optical frequency “magnetic plasmon” responses of comparable magnitude to the “electric plasmon” response. Au nanocups at their magnetoinductive resonance have the unique ability to redirect scattered light in a direction dependent on cup orientation, as a true three-dimensional nanoantenna. As optical frequency nanoantennas, reduced-symmetry plasmonic nanoparticles have light-scattering properties that depend strongly on geometry, orientation, and variations in dielectric environment. Here we investigate how these factors influence the spectral and angular dependence of light scattered by Au nanocups. A simple dielectric substrate causes the axial, electric dipole mode of the nanocup to deviate substantially from its characteristic cos square free space scattering profile, while the transverse, magnetic dipole mode remains remarkably insensitive to the presence of the substrate. Nanoscale irregularities of the nanocup rim and the local substrate permittivity have a surprisingly large effect on the spectral- and angle-dependent light-scattering properties of these structures. The different angular scattering and wavelength response from the axial and transverse nanocup modes make the nanocup an interesting particle for the nanoscale manipulation of light in three dimensions. The sensitivity of this system to geometric and environmental factors may present opportunities for active, substrate-mediated control of light scattering.

Page generated in 0.2152 seconds