• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large Area Nanostructured Electronics Enabled Via Adhesion Lithography

Loganathan, Kalaivanan 09 1900 (has links)
The fifth and sixth generations of mobile communications and the internet of things (IoT) demand high-performance electronic devices made at low cost over a large area. Unlike the conventional Si-based electronics, the emerging large-area electronics (LAE) require flexible, stretchable, and lightweight devices that are printable and able to mass manufacture without compromising the performance of state-of-the-art electronic devices. Hence, there is a quest to find alternative fabrication routes and conventional photolithography. In this research work, we explored the adhesion lithography (a-Lith) to further simplify the process steps by adapting bi-layer metals to induce intrinsic stress in the bi-layer and hence facilitate the self-peeling of metal layers which results in more uniform and smaller nanogap between two metals than the previously established a-Lith fabricated nanogaps. The nanogap metal electrodes are further used to fabricate radio frequency (RF) Schottky diodes made using a printable metal oxide semiconductor and flashlight annealing over wafer-scale and demonstrate the operation frequencies above 100 GHz/47 GHz (intrinsic/extrinsic). Notably, for the first time, photonic annealing on such an ultra-small (< 20 nm) nanoscale channel was demonstrated, and the rapid manufacturing of RF diodes from the solution route was achieved. On the other hand, for the first time, organic diodes made using a-Lith fabricated nanogap metal electrodes, and high mobility polymer semiconductors with molecular dopants showed an extrinsic cut-off frequency well above 14 GHz. Finally, the nanogap metal electrodes were explored as a mold and shadow mask to fabricate nano-feature soft stamp and nano-fluidic channels (NFC), respectively. The soft stamp can replicate the high aspect ratio nanoscale features on any arbitrary substrates using available soft lithography routes, and the NFC is further envisioned for bio-molecules detection and sensing applications.
2

Fabrication and Applications of a Focused Ion Beam Based Nanocontact Platform for Electrical Characterization of Molecules and Particles

Blom, Tobias January 2010 (has links)
The development of new materials with novel properties plays an important role in improving our lives and welfare. Research in Nanotechnology can provide e.g. cheaper and smarter materials in applications such as energy storage and sensors. In order for this development to proceed, we need to be able to characterize the material properties at the nano-, and even the atomic scale. The ultimate goal is to be able to tailor them according to our needs. One of the great challenges concerning the characterization of nano-sized objects is how to achieve the physical contact to them. This thesis is focused on the contacting of nanoobjects with the aim of electrically characterizing them and subsequently understanding their electrical properties. The analyzed nanoobjects are carbon nanosheets, nanotetrapods, nanoparticles and molecular systems. Two contacting strategies were employed in this thesis. The first strategy involved the development of a focused ion beam (FIB) based nanocontact platform. The platform consists of gold nanoelectrodes, having nanogaps of 10-30 nm, on top of an insulating substrate. Gold nanoparticles, double-stranded DNA and cadmium telluride nanotetrapods have been trapped in the gaps by using dielectrophoresis. In certain studies, the gold electrodes have also been coated with conducting or non-conducting molecules, prior to the trapping of gold nanoparticles, in order to form molecular junctions. These junctions were subsequently electrically characterized to evaluate the conduction properties of these molecular systems. For the purpose of better controlling the attachment of molecules to the nanoelectrodes, a novel route to synthesize alkanedithiol coated gold nanoparticles was developed. The second contacting strategy was based on the versatility of the FIB instrument as a platform for in-situ manipulation and electrical characterization of non-functionalized and functionalized carbon nanosheets, where it was found that the functionalized samples had an increased conductivity by more than one order of magnitude. Both contacting strategies proved to be valuable for building knowledge around contacting and electrical characterization of nanoobjects

Page generated in 0.0749 seconds