• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and optimisation of a zinc oxide nanowire nanogenerator

Van den Heever, Thomas Stanley 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: This study developed and optimised zinc oxide (ZnO) nanowire-based nanogenerator. The nanogenerator works on the piezoelectric effect that is, a mechanical force is converted to an electrical voltage. The ZnO nanowires are piezoelectric and when any force is applied to the nanowires an output voltage is generated. This ZnO nanowire-based nanogenerator can be used to power small electronic devices, such as pacemakers. The nanogenerator can also be incorporated into clothes and shoes to generate electricity to charge a cell phone for example. The problem experienced currently is that the nanogenerator does not generate enough electricity to be of practical use and needs to be further optimised. Simulations and mathematical models were used to identify areas where the nanogenerator could be optimised in order to increase the output voltage. It is shown that the morphology of the nanowires can have a considerable effect on the output voltage. For this reason the growth of the nanowires was investigated first. Different methods were used to propagate the nanowires in order to select the method that, on average, has the highest output voltage. Accordingly, one parameter at a time and design of experiments were used to optimise the nanowire growth. Consequently, these two methods were used to optimise the growth parameters with the respect to the output voltage. The aqueous solution method was found to yield nanowires that give the highest generated output voltage. After growing over 600 nanowire samples, optimal growth parameters for this method were found. These optimal growth parameters were subsequently used to grow nanowires that were used to manufacture the nanogenerator. The nanowires were grown on a solid substrate and hence the nanogenerator was also manufactured on the solid substrate. Through various optimisations of the manufacturing process the maximum output voltage achieved was about 500 mV. However, this output voltage is too low to be of practical use, even though the output has been raised considerably. The main problem was found to be the fact that the contact between the nanowires and the electrode was weak due to contamination. A new method was therefore required where the electrode and the nanowires would be in proper contact to ensure that higher output voltages were achieved. Subsequently, a flexible nanogenerator was manufactured in order to solve this problem. Accordingly, the nanowires were grown on the flexible polyimide film and a buffer layer was then spun onto the flexible substrate, leaving only the nanowire tips exposed. The electrode was then sputtered on top of this buffer layer, covering the nanowire tips. This ensured proper contact between the nanowires and the electrode. The nanogenerator, which was manufactured with non-optimal growth parameters, gives a maximum voltage output of 1 V, double the maximum achieved with the solid nanogenerator. When the optimal growth parameters were used the output voltage was raised to 2 V. Various optimisation techniques were performed on the nanogenerator, including plasma treatment and annealing and the use of various materials in the buffer layer. Combining these optimisation methods subsequently led to an optimised nanogenerator that can generate an output voltage of over 5 V. This was achieved after over 1200 nanogenerators had been manufactured. However, the output voltage was not in a usable form. Circuitry was therefore developed to transform the voltage generated by the nanogenerator to a useable form. The best circuit, the LTC3588, was used to power an LED for 10 seconds. The completed device was found to achieve a power output of 0.3 mW, enough for small electronic devices. / AFRIKAANSE OPSOMMING: ‘n Sink-oksied (ZnO) nanodraad gebaseerde nanogenerator is ontwikkeld en geöptimeer. Die nanogenerator werk met behulp van die piezoelektriese effek - meganiese krag work omgesit in ‘n elektriese spanning. Die ZnO nanodrade is piezoelektries en wanneer ‘n krag op die drade aangewend word, word ‘n uittree spanning gegenereer. Die nanogenerator kan gebruik word om klein elektroniese toestelle, soos ‘n pasaangeër, van krag te voorsien. Die nanogenerator kan in klere en skoene geïnkorporeer word om elektrisiteit op te wek vir die laai van ‘n selfoon. Die probleem is egter dat die nanogenerator tans nie genoeg krag opwek om prakties van nut te wees nie en verdere optimasie word benodig. Simulasies en wikundige modelle work gebruik om areas te identifiseer waar die nanogenerator geöptimeer kan word, met die doel om die uittreespanning te verhoog. Dit word bewys dat die morfologie van die nanodrade ‘n groot effek het op die uittreespanning. Dus word die groei van die nanodrade eerste ondersoek. Verskillende metodes word gebruik om die nanodrade te groei en die beste metode, wat die hoogste uittreespanning op gemiddeld verskaf, word gekies. Een parameter op ‘n slag en ontwerp van eksperimente word gebruik om die nanodraad groei te optimeer. Die groei parameters word geöptimeer deur van die twee metodes gebruik te maak, en die optimeering word gedoen in terme van die uittreespanning. Die oplossing groei metode lei tot nanodrade wat die hoogste uittreespanning verskaf. Na oor die 600 nanodraad monsters gegroei is, is die optimale parameters gevind. Hierdie optimale parameters word uitsluitlik gebruik om die nanogenerator te vervaardig. Die nanodrade word op ‘n soliede substraat gegroei en dus word die nanogenerator op dieselfde soliede substraat vervaardig. Verskeie metodes is gebruik om die vervaardiging te optimeer en die hoogste uittreespanning wat bereik is, is 500 mV. Die uittreespanning is te laag om van praktiese nut te wees alhoewel dit heelwat verhoog is. Die grootste probleem is die swak kontak tussen die nanodrade en die elektrode, wat veroorsaak word deur kontaminasie. ‘n Nuwe metode word verlang wat beter kontak tussen die nanodrade en elektrode sal verseker. ‘n Buigbare nanogenerator is vervaardig om die probleem op te los. Die nanodrade word nou op ‘n buigbare film gegroei. ‘n Bufferlaag word tussen die nanodrade in gedraai, tot net die punte van die nanodrade nog sigbaar is. Die elektrode word bo-op die bufferlaag gedeponeer, wat behoorlike kontak tussen die nanodrade en elektrode verseker. Die nanogenerator wat met nie-optimale groei parameters vervaardig is, bereik ‘n uittreespanning van 1 V, dubbel die soliede nanogenerator. Met optimale groei parameters word die uittreespanning tot 2 V verhoog. Verskeie optimasie tegnieke word op die nanogenerator toegepas. Die metodes sluit in suurstof plasma behandeling, verhitting en die inkorporasie van verskillende materiale in die bufferlaag. ‘n Kombinasie van die metodes geïnkorporeer in een nanogenerator lei tot ‘n uittreespanning van 5 V. Die uittreespanning is bereik na oor die 1200 nanogenerators vervaardig is. The uittreespanning is nog nie in ‘n bruikbare vorm nie. Spesiale stroombane is ontwikkel wat die nanogenerator spanning omskakel na ‘n bruikbare vorm. Die beste stroombaan, die LTC3588, kan ‘n LED aanskakel vir 10 sekondes. The toestel kan ook 0.3mWuittreekrag voorsien, genoeg vir klein elektroniese toestelle om te werk.

Page generated in 0.1007 seconds